Av(1234, 1243, 1342, 1423, 2341, 4123)
Generating Function
\(\displaystyle \frac{-\sqrt{-4 x +1}\, x^{2}+3 x^{2}+\sqrt{-4 x +1}-1}{2 \left(x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 18, 55, 173, 560, 1858, 6291, 21657, 75581, 266797, 950911, 3417339, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{2} F \left(x
\right)^{2}-\left(x -1\right) \left(3 x^{2}-1\right) F \! \left(x \right)+x^{4}+2 x^{3}-2 x^{2}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n +2\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +3}+\frac{\left(5+3 n \right) a \! \left(n +1\right)}{n +3}+\frac{6 n}{n +3}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n +2\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +3}+\frac{\left(5+3 n \right) a \! \left(n +1\right)}{n +3}+\frac{6 n}{n +3}, \quad n \geq 5\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 24 rules.
Found on July 23, 2021.Finding the specification took 4 seconds.
Copy 24 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\
F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= y x\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x \right)\\
F_{12}\! \left(x , y\right) &= \frac{y F_{8}\! \left(x , y\right)-F_{8}\! \left(x , 1\right)}{-1+y}\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x , 1\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{19}\! \left(x , y\right) F_{21}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= \frac{y F_{20}\! \left(x , y\right)-F_{20}\! \left(x , 1\right)}{-1+y}\\
F_{20}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{21}\! \left(x , y\right)\\
\end{align*}\)