Av(1234, 1243, 1324, 1342, 1423, 2134, 2314, 2341, 4123)
Generating Function
\(\displaystyle \frac{-2 x^{4}-\sqrt{-4 x +1}\, x +\sqrt{-4 x +1}+x -1}{2 \left(x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 15, 43, 133, 430, 1431, 4863, 16797, 58787, 208013, 742901, 2674441, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{2} F \left(x
\right)^{2}+\left(x -1\right) \left(2 x^{4}-x +1\right) F \! \left(x \right)+x^{7}-x^{4}+x^{3}+x^{2}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 15\)
\(\displaystyle a \! \left(5\right) = 43\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +2}-\frac{3 n}{n +2}, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 15\)
\(\displaystyle a \! \left(5\right) = 43\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +2}-\frac{3 n}{n +2}, \quad n \geq 6\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 30 rules.
Found on July 23, 2021.Finding the specification took 4 seconds.
Copy 30 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{26}\! \left(x , y\right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x \right)+F_{22}\! \left(x , y\right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{26}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= y x\\
F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{8}\! \left(x \right)\\
F_{29}\! \left(x , y\right) &= \frac{y F_{15}\! \left(x , y\right)-F_{15}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)