Av(12345, 12435, 12453, 14235, 14253, 14523, 41235, 41253, 41523)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2756, 14071, 72224, 371650, 1914624, 9867763, 50859778, 262097703, ...

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 223 rules.

Finding the specification took 34676 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 223 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-F_{6}\! \left(x , y\right)+F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{220}\! \left(x , y\right)+F_{8}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{8}\! \left(x \right) &= 0\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{219}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{17}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x \right)+F_{215}\! \left(x , y\right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x , 1\right)\\ F_{29}\! \left(x , y\right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)+F_{31}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{31}\! \left(x , y\right) &= F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{212}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= -\frac{y \left(F_{35}\! \left(x , 1\right)-F_{35}\! \left(x , y\right)\right)}{-1+y}\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{25}\! \left(x \right)+F_{36}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{39}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{136}\! \left(x \right)+F_{40}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= -\frac{-F_{40}\! \left(x , y\right) y +F_{40}\! \left(x , 1\right)}{-1+y}\\ F_{41}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x , y\right)\\ F_{42}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x , 1\right)\\ F_{44}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{45}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{46}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= -\frac{-F_{44}\! \left(x , y\right) y +F_{44}\! \left(x , 1\right)}{-1+y}\\ F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x , 1\right)\\ F_{53}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{52}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= y x\\ F_{58}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{59}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x , 1\right)\\ F_{61}\! \left(x , y\right) &= F_{129}\! \left(x \right) F_{60}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{62}\! \left(x , y\right) &= F_{135}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{62}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{133}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{68}\! \left(x , y\right)+F_{72}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{72}\! \left(x , y\right) &= F_{129}\! \left(x \right) F_{69}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{74}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{11}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{73}\! \left(x , 1\right)\\ F_{80}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right) F_{80}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{82}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{124}\! \left(x , y\right)+F_{8}\! \left(x \right)+F_{82}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{84}\! \left(x , y\right)+F_{86}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{85}\! \left(x , y\right)\\ F_{85}\! \left(x , y\right) &= -\frac{-F_{83}\! \left(x , y\right) y +F_{83}\! \left(x , 1\right)}{-1+y}\\ F_{86}\! \left(x , y\right) &= F_{87}\! \left(x , y\right)\\ F_{87}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{57}\! \left(x , y\right) F_{70}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{89}\! \left(x , y\right)\\ F_{89}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{92}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{93}\! \left(x , y\right)+F_{95}\! \left(x \right)+F_{96}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)+F_{44}\! \left(x , y\right)\\ F_{95}\! \left(x \right) &= 4 F_{95} \left(x \right)^{2} x +x^{2}-8 F_{95}\! \left(x \right) x -F_{95} \left(x \right)^{2}+4 x +3 F_{95}\! \left(x \right)-1\\ F_{96}\! \left(x , y\right) &= F_{57}\! \left(x , y\right) F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{94}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{102}\! \left(x , y\right)\\ F_{101}\! \left(x , y\right) &= F_{52}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{60}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{57}\! \left(x , y\right)\\ F_{104}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{106}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{105}\! \left(x , y\right) &= F_{55}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{106}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)\\ F_{108}\! \left(x , y\right) &= F_{69} \left(x \right)^{2} F_{109}\! \left(x \right) F_{11}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{109}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{117}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{11}\! \left(x \right) F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right)\\ F_{119}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{118}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{119}\! \left(x , y\right)+F_{120}\! \left(x , y\right)+F_{95}\! \left(x \right)\\ F_{120}\! \left(x , y\right) &= F_{121}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{122}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{124}\! \left(x , y\right) &= F_{122}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= F_{126}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x , 1\right)\\ F_{127}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)+F_{75}\! \left(x \right)\\ F_{128}\! \left(x , y\right) &= F_{109}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{129}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{132}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{11}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{11}\! \left(x \right) F_{129}\! \left(x \right)\\ F_{133}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{134}\! \left(x , y\right)\\ F_{134}\! \left(x , y\right) &= -\frac{-F_{64}\! \left(x , y\right) y +F_{64}\! \left(x , 1\right)}{-1+y}\\ F_{135}\! \left(x , y\right) &= F_{52}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{159}\! \left(x \right)+F_{209}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x , 1\right)\\ F_{138}\! \left(x , y\right) &= F_{139}\! \left(x , y\right)+F_{156}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{139}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{140}\! \left(x , y\right)\\ F_{140}\! \left(x , y\right) &= F_{141}\! \left(x , y\right)+F_{150}\! \left(x , y\right)+F_{152}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{141}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{142}\! \left(x , y\right)\\ F_{142}\! \left(x , y\right) &= -\frac{y \left(F_{143}\! \left(x , 1\right)-F_{143}\! \left(x , y\right)\right)}{-1+y}\\ F_{143}\! \left(x , y\right) &= -\frac{y \left(F_{144}\! \left(x , 1\right)-F_{144}\! \left(x , y\right)\right)}{-1+y}\\ F_{144}\! \left(x , y\right) &= F_{145}\! \left(x , y\right)+F_{146}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{145}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{143}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= F_{147}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{147}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)+F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x , 1\right)\\ F_{149}\! \left(x , y\right) &= x F_{149}\! \left(x , y\right)^{2} y +1\\ F_{150}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{151}\! \left(x , y\right)\\ F_{151}\! \left(x , y\right) &= -\frac{y \left(F_{140}\! \left(x , 1\right)-F_{140}\! \left(x , y\right)\right)}{-1+y}\\ F_{152}\! \left(x , y\right) &= F_{153}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{153}\! \left(x , y\right) &= F_{140}\! \left(x , y\right)+F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x , 1\right)\\ F_{155}\! \left(x , y\right) &= -\frac{-F_{149}\! \left(x , y\right) y +F_{149}\! \left(x , 1\right)}{-1+y}\\ F_{156}\! \left(x , y\right) &= F_{157}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= F_{158}\! \left(x , 1, y\right)\\ F_{158}\! \left(x , y , z\right) &= -\frac{-F_{147}\! \left(x , y z \right) y +F_{147}\! \left(x , z\right)}{-1+y}\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x , 1\right)\\ F_{161}\! \left(x , y\right) &= F_{162}\! \left(x , y\right)\\ F_{162}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{163}\! \left(x , y\right)\\ F_{163}\! \left(x , y\right) &= F_{164}\! \left(x , y\right)+F_{171}\! \left(x , y\right)+F_{173}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{164}\! \left(x , y\right) &= F_{165}\! \left(x , y\right)\\ F_{165}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{166}\! \left(x , y\right)\\ F_{166}\! \left(x , y\right) &= -\frac{y \left(F_{167}\! \left(x , 1\right)-F_{167}\! \left(x , y\right)\right)}{-1+y}\\ F_{167}\! \left(x , y\right) &= F_{168}\! \left(x , y\right)+F_{170}\! \left(x , y\right)\\ F_{168}\! \left(x , y\right) &= -\frac{y \left(F_{169}\! \left(x , 1\right)-F_{169}\! \left(x , y\right)\right)}{-1+y}\\ F_{169}\! \left(x , y\right) &= F_{138}\! \left(x , y\right)+F_{161}\! \left(x , y\right)\\ F_{170}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{166}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{172}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= -\frac{y \left(F_{163}\! \left(x , 1\right)-F_{163}\! \left(x , y\right)\right)}{-1+y}\\ F_{173}\! \left(x , y\right) &= F_{174}\! \left(x , y\right)\\ F_{174}\! \left(x , y\right) &= F_{175}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{175}\! \left(x , y\right) &= F_{176}\! \left(x , y\right)+F_{189}\! \left(x , y\right)\\ F_{176}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)+F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{184}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{11}\! \left(x \right) F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{39}\! \left(x , 1\right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{167}\! \left(x , 1\right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{11}\! \left(x \right) F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{188}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{118}\! \left(x , 1\right)\\ F_{188}\! \left(x \right) &= F_{163}\! \left(x , 1\right)\\ F_{189}\! \left(x , y\right) &= F_{190}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{191}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{192}\! \left(x , y\right)+F_{206}\! \left(x , y\right)+F_{208}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{192}\! \left(x , y\right) &= F_{193}\! \left(x , y\right)\\ F_{193}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{194}\! \left(x , y\right)\\ F_{194}\! \left(x , y\right) &= -\frac{-F_{195}\! \left(x , y\right) y +F_{195}\! \left(x , 1\right)}{-1+y}\\ F_{195}\! \left(x , y\right) &= F_{196}\! \left(x , y\right)\\ F_{196}\! \left(x , y\right) &= F_{197}\! \left(x , y\right)+F_{203}\! \left(x , y\right)\\ F_{197}\! \left(x , y\right) &= F_{198}\! \left(x , y\right)\\ F_{198}\! \left(x , y\right) &= -\frac{-F_{199}\! \left(x , y\right) y +F_{199}\! \left(x , 1\right)}{-1+y}\\ F_{199}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{200}\! \left(x , y\right)+F_{202}\! \left(x , y\right)\\ F_{200}\! \left(x , y\right) &= F_{201}\! \left(x , y\right)\\ F_{201}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{195}\! \left(x , y\right)\\ F_{202}\! \left(x , y\right) &= F_{199}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{203}\! \left(x , y\right) &= F_{204}\! \left(x , y\right)\\ F_{204}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{205}\! \left(x , y\right)\\ F_{205}\! \left(x , y\right) &= F_{194}\! \left(x , y\right)\\ F_{206}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{207}\! \left(x , y\right)\\ F_{207}\! \left(x , y\right) &= -\frac{-F_{191}\! \left(x , y\right) y +F_{191}\! \left(x , 1\right)}{-1+y}\\ F_{208}\! \left(x , y\right) &= F_{191}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{11}\! \left(x \right) F_{211}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{212}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{213}\! \left(x , y\right)\\ F_{213}\! \left(x , y\right) &= -\frac{y \left(F_{33}\! \left(x , 1\right)-F_{33}\! \left(x , y\right)\right)}{-1+y}\\ F_{214}\! \left(x \right) &= F_{129}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{215}\! \left(x , y\right) &= F_{216}\! \left(x , y\right)\\ F_{216}\! \left(x , y\right) &= F_{217}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{217}\! \left(x , y\right) &= F_{218}\! \left(x , y\right)+F_{83}\! \left(x , y\right)\\ F_{218}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\ F_{219}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{69}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{220}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{221}\! \left(x , y\right)\\ F_{221}\! \left(x , y\right) &= -\frac{-y F_{222}\! \left(x , y\right)+F_{222}\! \left(x , 1\right)}{-1+y}\\ F_{222}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Req Corrob Symmetries" and has 222 rules.

Finding the specification took 4609 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 222 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-F_{6}\! \left(x , y\right)+F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{219}\! \left(x , y\right)+F_{8}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{8}\! \left(x \right) &= 0\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{218}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{17}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x \right)+F_{214}\! \left(x , y\right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x , 1\right)\\ F_{29}\! \left(x , y\right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)+F_{31}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{31}\! \left(x , y\right) &= F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{211}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= -\frac{y \left(F_{35}\! \left(x , 1\right)-F_{35}\! \left(x , y\right)\right)}{-1+y}\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{25}\! \left(x \right)+F_{36}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{39}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{136}\! \left(x \right)+F_{40}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= -\frac{-F_{40}\! \left(x , y\right) y +F_{40}\! \left(x , 1\right)}{-1+y}\\ F_{41}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x , y\right)\\ F_{42}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x , 1\right)\\ F_{44}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{45}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{46}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= -\frac{-F_{44}\! \left(x , y\right) y +F_{44}\! \left(x , 1\right)}{-1+y}\\ F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x , 1\right)\\ F_{53}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{52}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= y x\\ F_{58}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{59}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x , 1\right)\\ F_{61}\! \left(x , y\right) &= F_{129}\! \left(x \right) F_{60}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{62}\! \left(x , y\right) &= F_{135}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{62}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{133}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{68}\! \left(x , y\right)+F_{72}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{72}\! \left(x , y\right) &= F_{129}\! \left(x \right) F_{69}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{74}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{11}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{73}\! \left(x , 1\right)\\ F_{80}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right) F_{80}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{82}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{124}\! \left(x , y\right)+F_{8}\! \left(x \right)+F_{82}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{84}\! \left(x , y\right)+F_{86}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{85}\! \left(x , y\right)\\ F_{85}\! \left(x , y\right) &= -\frac{-F_{83}\! \left(x , y\right) y +F_{83}\! \left(x , 1\right)}{-1+y}\\ F_{86}\! \left(x , y\right) &= F_{87}\! \left(x , y\right)\\ F_{87}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{57}\! \left(x , y\right) F_{70}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{89}\! \left(x , y\right)\\ F_{89}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{92}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{93}\! \left(x , y\right)+F_{95}\! \left(x \right)+F_{96}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)+F_{44}\! \left(x , y\right)\\ F_{95}\! \left(x \right) &= 4 F_{95} \left(x \right)^{2} x +x^{2}-8 F_{95}\! \left(x \right) x -F_{95} \left(x \right)^{2}+4 x +3 F_{95}\! \left(x \right)-1\\ F_{96}\! \left(x , y\right) &= F_{57}\! \left(x , y\right) F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{94}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{102}\! \left(x , y\right)\\ F_{101}\! \left(x , y\right) &= F_{52}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{60}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{57}\! \left(x , y\right)\\ F_{104}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{106}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{105}\! \left(x , y\right) &= F_{55}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{106}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)\\ F_{108}\! \left(x , y\right) &= F_{69} \left(x \right)^{2} F_{109}\! \left(x \right) F_{11}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{109}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{117}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{11}\! \left(x \right) F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right)\\ F_{119}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{118}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{119}\! \left(x , y\right)+F_{120}\! \left(x , y\right)+F_{95}\! \left(x \right)\\ F_{120}\! \left(x , y\right) &= F_{121}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{122}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{124}\! \left(x , y\right) &= F_{122}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= F_{126}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x , 1\right)\\ F_{127}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)+F_{75}\! \left(x \right)\\ F_{128}\! \left(x , y\right) &= F_{109}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{129}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{132}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{11}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{11}\! \left(x \right) F_{129}\! \left(x \right)\\ F_{133}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{134}\! \left(x , y\right)\\ F_{134}\! \left(x , y\right) &= -\frac{-F_{64}\! \left(x , y\right) y +F_{64}\! \left(x , 1\right)}{-1+y}\\ F_{135}\! \left(x , y\right) &= F_{52}\! \left(x , y\right) F_{69}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{154}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{137}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{139}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{11}\! \left(x \right) F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x , 1\right)\\ F_{141}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{142}\! \left(x , y\right)+F_{148}\! \left(x , y\right)+F_{150}\! \left(x , y\right)\\ F_{142}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{143}\! \left(x , y\right)\\ F_{143}\! \left(x , y\right) &= -\frac{-F_{144}\! \left(x , y\right) y +F_{144}\! \left(x , 1\right)}{-1+y}\\ F_{144}\! \left(x , y\right) &= -\frac{-F_{145}\! \left(x , y\right) y +F_{145}\! \left(x , 1\right)}{-1+y}\\ F_{145}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{146}\! \left(x , y\right)+F_{147}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{144}\! \left(x , y\right)\\ F_{147}\! \left(x , y\right) &= F_{145}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{148}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{149}\! \left(x , y\right)\\ F_{149}\! \left(x , y\right) &= -\frac{-F_{141}\! \left(x , y\right) y +F_{141}\! \left(x , 1\right)}{-1+y}\\ F_{150}\! \left(x , y\right) &= F_{141}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{151}\! \left(x \right) &= F_{11}\! \left(x \right) F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x , 1\right)\\ F_{153}\! \left(x , y\right) &= -\frac{-F_{145}\! \left(x , y\right) y +F_{145}\! \left(x , 1\right)}{-1+y}\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x , 1\right)\\ F_{156}\! \left(x , y\right) &= F_{157}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{158}\! \left(x , y\right)\\ F_{158}\! \left(x , y\right) &= F_{159}\! \left(x , y\right)+F_{182}\! \left(x , y\right)+F_{184}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{159}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)\\ F_{160}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{161}\! \left(x , y\right)\\ F_{161}\! \left(x , y\right) &= -\frac{y \left(F_{162}\! \left(x , 1\right)-F_{162}\! \left(x , y\right)\right)}{-1+y}\\ F_{162}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)+F_{181}\! \left(x , y\right)\\ F_{163}\! \left(x , y\right) &= -\frac{y \left(F_{164}\! \left(x , 1\right)-F_{164}\! \left(x , y\right)\right)}{-1+y}\\ F_{164}\! \left(x , y\right) &= F_{165}\! \left(x , y\right)+F_{167}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{165}\! \left(x , y\right) &= F_{166}\! \left(x , y\right)\\ F_{166}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{162}\! \left(x , y\right)\\ F_{167}\! \left(x , y\right) &= F_{168}\! \left(x , y\right)\\ F_{168}\! \left(x , y\right) &= F_{169}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{169}\! \left(x , y\right) &= F_{170}\! \left(x , y\right)+F_{171}\! \left(x , y\right)\\ F_{170}\! \left(x , y\right) &= F_{164}\! \left(x , y\right)+F_{24}\! \left(x \right)\\ F_{171}\! \left(x , y\right) &= F_{172}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{173}\! \left(x , y\right)+F_{180}\! \left(x , y\right)\\ F_{173}\! \left(x , y\right) &= F_{174}\! \left(x , y\right)\\ F_{174}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{175}\! \left(x , y\right)\\ F_{175}\! \left(x , y\right) &= F_{176}\! \left(x , y\right)+F_{177}\! \left(x , y\right)\\ F_{176}\! \left(x , y\right) &= -\frac{-F_{172}\! \left(x , y\right) y +F_{172}\! \left(x , 1\right)}{-1+y}\\ F_{177}\! \left(x , y\right) &= F_{178}\! \left(x , y\right)\\ F_{178}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{179}\! \left(x , y\right)\\ F_{179}\! \left(x , y\right) &= -\frac{-F_{175}\! \left(x , y\right) y +F_{175}\! \left(x , 1\right)}{-1+y}\\ F_{180}\! \left(x , y\right) &= F_{172}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{181}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{161}\! \left(x , y\right)\\ F_{182}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{183}\! \left(x , y\right)\\ F_{183}\! \left(x , y\right) &= -\frac{y \left(F_{158}\! \left(x , 1\right)-F_{158}\! \left(x , y\right)\right)}{-1+y}\\ F_{184}\! \left(x , y\right) &= F_{185}\! \left(x , y\right)\\ F_{185}\! \left(x , y\right) &= F_{186}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{186}\! \left(x , y\right) &= F_{187}\! \left(x , y\right)+F_{200}\! \left(x , y\right)\\ F_{187}\! \left(x , y\right) &= F_{158}\! \left(x , y\right)+F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{195}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{11}\! \left(x \right) F_{191}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{39}\! \left(x , 1\right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{162}\! \left(x , 1\right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{11}\! \left(x \right) F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{118}\! \left(x , 1\right)\\ F_{199}\! \left(x \right) &= F_{158}\! \left(x , 1\right)\\ F_{200}\! \left(x , y\right) &= F_{201}\! \left(x , y\right)\\ F_{201}\! \left(x , y\right) &= F_{202}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{202}\! \left(x , y\right) &= F_{203}\! \left(x , y\right)+F_{205}\! \left(x , y\right)+F_{207}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{203}\! \left(x , y\right) &= F_{204}\! \left(x , y\right)\\ F_{204}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{179}\! \left(x , y\right)\\ F_{205}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{206}\! \left(x , y\right)\\ F_{206}\! \left(x , y\right) &= -\frac{-F_{202}\! \left(x , y\right) y +F_{202}\! \left(x , 1\right)}{-1+y}\\ F_{207}\! \left(x , y\right) &= F_{202}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{11}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{211}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{212}\! \left(x , y\right)\\ F_{212}\! \left(x , y\right) &= -\frac{y \left(F_{33}\! \left(x , 1\right)-F_{33}\! \left(x , y\right)\right)}{-1+y}\\ F_{213}\! \left(x \right) &= F_{129}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{214}\! \left(x , y\right) &= F_{215}\! \left(x , y\right)\\ F_{215}\! \left(x , y\right) &= F_{216}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{216}\! \left(x , y\right) &= F_{217}\! \left(x , y\right)+F_{83}\! \left(x , y\right)\\ F_{217}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\ F_{218}\! \left(x , y\right) &= F_{103}\! \left(x , y\right) F_{69}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{219}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{220}\! \left(x , y\right)\\ F_{220}\! \left(x , y\right) &= -\frac{-y F_{221}\! \left(x , y\right)+F_{221}\! \left(x , 1\right)}{-1+y}\\ F_{221}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\ \end{align*}\)