Av(12345, 12435, 12453, 13245, 13425, 14235, 14253, 14325)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3040, 16942, 97468, 574930, 3458618, 21134010, 130789978, 817959830, ...

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 57 rules.

Finding the specification took 815 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 57 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x , y_{0}\right)+F_{6}\! \left(x , y_{0}\right)\\ F_{6}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}\right) F_{7}\! \left(x , y_{0}\right)\\ F_{7}\! \left(x , y_{0}\right) &= F_{8}\! \left(x , y_{0}, 1\right)\\ F_{8}\! \left(x , y_{0}, y_{1}\right) &= F_{9}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{9}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}, y_{1}\right)+F_{14}\! \left(x , y_{0}, y_{1}\right)+F_{54}\! \left(x , y_{0}, y_{1}\right)\\ F_{10}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}, y_{1}\right) F_{13}\! \left(x , y_{0}\right)\\ F_{11}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}, y_{1}\right)+F_{12}\! \left(x , y_{0}, y_{1}\right)+F_{14}\! \left(x , y_{0}, y_{1}\right)+F_{51}\! \left(x , y_{0}, y_{1}\right)\\ F_{12}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}, y_{1}\right) F_{13}\! \left(x , y_{0}\right)\\ F_{13}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{1}\right) F_{15}\! \left(x , y_{0}, y_{1}\right)\\ F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{17}\! \left(x , y_{1}\right)+F_{19}\! \left(x , y_{1}\right)+F_{21}\! \left(x , y_{0}, y_{1}\right)\\ F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}\right) F_{15}\! \left(x , y_{0}, y_{1}\right)\\ F_{17}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}, 1\right)\\ F_{18}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{19}\! \left(x , y_{0}\right) &= F_{20}\! \left(x , y_{0}, 1\right)\\ F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{21}\! \left(x , y_{0}, y_{1}\right) &= F_{22}\! \left(x , y_{0}, y_{1}\right) F_{41}\! \left(x \right)\\ F_{22}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{23}\! \left(x , 1, y_{1}\right) y_{1}-F_{23}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{23}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{24}\! \left(x , y_{0}, y_{1}\right) &= F_{25}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{27}\! \left(x , y_{1}, y_{2}\right)+F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{0}\right) F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{27}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}\right) F_{28}\! \left(x , y_{0}, y_{1}\right)\\ F_{28}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{8}\! \left(x , y_{0}, 1\right) y_{0}-F_{8}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{2}\right) F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{32}\! \left(x , y_{1}, y_{2}\right)+F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{47}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{0}\right) F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{32}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}\right) F_{33}\! \left(x , y_{0}, y_{1}\right)\\ F_{33}\! \left(x , y_{0}, y_{1}\right) &= F_{34}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{35}\! \left(x , y_{0}, \frac{y_{1}}{y_{2}}, y_{2}\right) y_{0} y_{1}+F_{35}\! \left(x , y_{0}, \frac{1}{y_{0}}, y_{2}\right) y_{2}}{y_{0} y_{1}-y_{2}}\\ F_{35}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{36}\! \left(x , y_{0}, y_{0} y_{1}, y_{2}\right)\\ F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{37}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\ F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{1}, y_{2}\right)+F_{14}\! \left(x , y_{1}, y_{2}\right)+F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{0}\right) F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{40}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{41}\! \left(x \right)\\ F_{40}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{24}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{24}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{41}\! \left(x \right) &= x\\ F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{2}\right) F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{44}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{44}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{44}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{45}\! \left(x , 1, y_{1}\right) y_{1}-F_{45}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{2}\right) F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{47}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{41}\! \left(x \right) F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{22}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{22}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{41}\! \left(x \right) F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}+F_{25}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{41}\! \left(x \right) F_{52}\! \left(x , y_{0}, y_{1}\right)\\ F_{52}\! \left(x , y_{0}, y_{1}\right) &= F_{53}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{24}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{24}\! \left(x , y_{1}, y_{2}\right)}{y_{0}-1}\\ F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{0}, y_{1}\right) F_{41}\! \left(x \right)\\ F_{55}\! \left(x , y_{0}\right) &= F_{41}\! \left(x \right) F_{56}\! \left(x , y_{0}\right)\\ F_{56}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{5}\! \left(x , y_{0}\right)+F_{5}\! \left(x , 1\right)}{y_{0}-1}\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 1579 rules.

Finding the specification took 137197 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 1579 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{48}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{52}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{59}\! \left(x \right)+F_{63}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{66}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{52}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= x^{2}\\ F_{71}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{63}\! \left(x \right)+F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{15}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{20}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x , 1\right)\\ F_{102}\! \left(x , y_{0}\right) &= F_{103}\! \left(x , y_{0}\right)+F_{174}\! \left(x , y_{0}\right)\\ F_{103}\! \left(x , y_{0}\right) &= F_{104}\! \left(x , y_{0}\right)+F_{129}\! \left(x , y_{0}\right)\\ F_{104}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right) F_{15}\! \left(x \right)\\ F_{105}\! \left(x , y_{0}\right) &= F_{106}\! \left(x , y_{0}\right)\\ F_{106}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{108}\! \left(x , y_{0}\right)\\ F_{107}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{108}\! \left(x , y_{0}\right) &= F_{109}\! \left(x , y_{0}\right)+F_{117}\! \left(x , y_{0}\right)\\ F_{109}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{110}\! \left(x , y_{0}\right)\\ F_{110}\! \left(x , y_{0}\right) &= F_{111}\! \left(x , y_{0}\right)\\ F_{111}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{112}\! \left(x , y_{0}\right)\\ F_{112}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right)+F_{116}\! \left(x , y_{0}\right)\\ F_{113}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{114}\! \left(x , y_{0}\right)\\ F_{114}\! \left(x , y_{0}\right) &= F_{115}\! \left(x , y_{0}\right)\\ F_{115}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{0}\right)\\ F_{116}\! \left(x , y_{0}\right) &= F_{110}\! \left(x , y_{0}\right)\\ F_{117}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{118}\! \left(x , y_{0}\right)\\ F_{118}\! \left(x , y_{0}\right) &= F_{119}\! \left(x , y_{0}\right)+F_{126}\! \left(x , y_{0}\right)+F_{20}\! \left(x \right)\\ F_{119}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{120}\! \left(x , y_{0}\right)\\ F_{120}\! \left(x , y_{0}\right) &= F_{121}\! \left(x , y_{0}\right)+F_{122}\! \left(x , y_{0}\right)\\ F_{121}\! \left(x , y_{0}\right) &= F_{114}\! \left(x , y_{0}\right)\\ F_{122}\! \left(x , y_{0}\right) &= F_{123}\! \left(x , y_{0}\right)\\ F_{123}\! \left(x , y_{0}\right) &= F_{124}\! \left(x , y_{0}\right)\\ F_{124}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{125}\! \left(x , y_{0}\right)\\ F_{125}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{123}\! \left(x , y_{0}\right)\\ F_{126}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{127}\! \left(x , y_{0}\right)\\ F_{127}\! \left(x , y_{0}\right) &= F_{125}\! \left(x , y_{0}\right)+F_{128}\! \left(x , y_{0}\right)\\ F_{128}\! \left(x , y_{0}\right) &= F_{118}\! \left(x , y_{0}\right)\\ F_{129}\! \left(x , y_{0}\right) &= F_{130}\! \left(x , y_{0}\right)+F_{171}\! \left(x , y_{0}\right)\\ F_{130}\! \left(x , y_{0}\right) &= F_{114}\! \left(x , y_{0}\right) F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{168}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{142}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{150}\! \left(x \right)+F_{165}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{164}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{20}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{159}\! \left(x \right)+F_{163}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{162}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{158}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{152}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{171}\! \left(x , y_{0}\right) &= F_{172}\! \left(x , y_{0}\right) F_{88}\! \left(x \right)\\ F_{172}\! \left(x , y_{0}\right) &= F_{173}\! \left(x , y_{0}\right)\\ F_{173}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{0}\right) F_{114}\! \left(x , y_{0}\right)\\ F_{174}\! \left(x , y_{0}\right) &= F_{175}\! \left(x , y_{0}, 1\right)\\ F_{175}\! \left(x , y_{0}, y_{1}\right) &= F_{176}\! \left(x , y_{0}, y_{1}\right)\\ F_{176}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{15}\! \left(x \right) F_{177}\! \left(x , y_{0}, y_{1}\right)\\ F_{177}\! \left(x , y_{0}, y_{1}\right) &= F_{178}\! \left(x , y_{1}, y_{0}\right)+F_{179}\! \left(x , y_{0}, y_{1}\right)\\ F_{178}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right)^{2} F_{105}\! \left(x , y_{1}\right)\\ F_{179}\! \left(x , y_{0}, y_{1}\right) &= F_{180}\! \left(x , y_{0}, y_{1}\right) F_{184}\! \left(x , y_{0}\right)\\ F_{180}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right)+F_{181}\! \left(x , y_{0}, y_{1}\right)\\ F_{181}\! \left(x , y_{0}, y_{1}\right) &= F_{182}\! \left(x , y_{0}, y_{1}\right)+F_{183}\! \left(x , y_{1}, y_{0}\right)+F_{20}\! \left(x \right)\\ F_{182}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{114}\! \left(x , y_{1}\right)\\ F_{183}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{180}\! \left(x , y_{1}, y_{0}\right)\\ F_{184}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{105}\! \left(x , y_{0}\right)\\ F_{185}\! \left(x \right) &= F_{1578}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{1573}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x , 1\right)\\ F_{189}\! \left(x , y_{0}\right) &= F_{190}\! \left(x , y_{0}\right)\\ F_{190}\! \left(x , y_{0}\right) &= F_{191}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{191}\! \left(x , y_{0}\right) &= F_{192}\! \left(x , y_{0}\right)+F_{246}\! \left(x , y_{0}\right)\\ F_{192}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{193}\! \left(x , 1\right)-F_{193}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\ F_{193}\! \left(x , y_{0}\right) &= F_{189}\! \left(x , y_{0}\right)+F_{194}\! \left(x , y_{0}\right)\\ F_{194}\! \left(x , y_{0}\right) &= F_{195}\! \left(x , y_{0}\right)\\ F_{195}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{196}\! \left(x , y_{0}\right)\\ F_{196}\! \left(x , y_{0}\right) &= F_{197}\! \left(x , y_{0}\right)+F_{203}\! \left(x , y_{0}\right)\\ F_{197}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{198}\! \left(x , y_{0}\right)\\ F_{198}\! \left(x , y_{0}\right) &= F_{199}\! \left(x , y_{0}\right)\\ F_{199}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{200}\! \left(x , y_{0}\right)\\ F_{200}\! \left(x , y_{0}\right) &= F_{201}\! \left(x , y_{0}\right)+F_{202}\! \left(x , y_{0}\right)\\ F_{201}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{107}\! \left(x , y_{0}\right)\\ F_{202}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right)\\ F_{203}\! \left(x , y_{0}\right) &= F_{194}\! \left(x , y_{0}\right)+F_{204}\! \left(x , y_{0}\right)\\ F_{204}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{205}\! \left(x , y_{0}\right)+F_{243}\! \left(x , y_{0}\right)\\ F_{205}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{206}\! \left(x , y_{0}\right)\\ F_{206}\! \left(x , y_{0}\right) &= F_{207}\! \left(x , y_{0}\right)+F_{213}\! \left(x , y_{0}\right)\\ F_{207}\! \left(x , y_{0}\right) &= F_{198}\! \left(x , y_{0}\right)+F_{208}\! \left(x , y_{0}\right)\\ F_{208}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{209}\! \left(x , y_{0}\right)+F_{211}\! \left(x , y_{0}\right)\\ F_{209}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{210}\! \left(x , y_{0}\right)\\ F_{210}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right)\\ F_{211}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{212}\! \left(x , y_{0}\right)\\ F_{212}\! \left(x , y_{0}\right) &= F_{202}\! \left(x , y_{0}\right)\\ F_{213}\! \left(x , y_{0}\right) &= F_{204}\! \left(x , y_{0}\right)+F_{214}\! \left(x , y_{0}\right)\\ F_{214}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{215}\! \left(x , y_{0}\right)+F_{219}\! \left(x , y_{0}\right)+F_{240}\! \left(x , y_{0}\right)\\ F_{215}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{216}\! \left(x , y_{0}\right)\\ F_{216}\! \left(x , y_{0}\right) &= F_{217}\! \left(x , y_{0}\right)+F_{218}\! \left(x , y_{0}\right)\\ F_{217}\! \left(x , y_{0}\right) &= F_{208}\! \left(x , y_{0}\right)\\ F_{218}\! \left(x , y_{0}\right) &= F_{214}\! \left(x , y_{0}\right)\\ F_{219}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{220}\! \left(x , y_{0}\right)\\ F_{220}\! \left(x , y_{0}\right) &= F_{221}\! \left(x , y_{0}\right)\\ F_{221}\! \left(x , y_{0}\right) &= y_{0} F_{222}\! \left(x , y_{0}\right)\\ F_{222}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{223}\! \left(x , y_{0}\right)+F_{239}\! \left(x , y_{0}\right)\\ F_{223}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{224}\! \left(x , y_{0}\right)\\ F_{224}\! \left(x , y_{0}\right) &= F_{225}\! \left(x , y_{0}\right)+F_{230}\! \left(x , y_{0}\right)\\ F_{225}\! \left(x , y_{0}\right) &= F_{226}\! \left(x , y_{0}\right)+F_{4}\! \left(x \right)\\ F_{226}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{227}\! \left(x , y_{0}\right)+F_{229}\! \left(x , y_{0}\right)\\ F_{227}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{228}\! \left(x , y_{0}\right)\\ F_{228}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right)\\ F_{229}\! \left(x , y_{0}\right) &= y_{0} x^{2}\\ F_{230}\! \left(x , y_{0}\right) &= F_{222}\! \left(x , y_{0}\right)+F_{231}\! \left(x , y_{0}\right)\\ F_{231}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{232}\! \left(x , y_{0}\right)+F_{236}\! \left(x , y_{0}\right)+F_{238}\! \left(x , y_{0}\right)\\ F_{232}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{233}\! \left(x , y_{0}\right)\\ F_{233}\! \left(x , y_{0}\right) &= F_{234}\! \left(x , y_{0}\right)+F_{235}\! \left(x , y_{0}\right)\\ F_{234}\! \left(x , y_{0}\right) &= F_{226}\! \left(x , y_{0}\right)\\ F_{235}\! \left(x , y_{0}\right) &= F_{231}\! \left(x , y_{0}\right)\\ F_{236}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{237}\! \left(x , y_{0}\right)\\ F_{237}\! \left(x , y_{0}\right) &= F_{222}\! \left(x , y_{0}\right)\\ F_{238}\! \left(x , y_{0}\right) &= F_{221}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{239}\! \left(x , y_{0}\right) &= F_{194}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{240}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{241}\! \left(x , y_{0}\right)\\ F_{241}\! \left(x , y_{0}\right) &= F_{242}\! \left(x , y_{0}\right)\\ F_{242}\! \left(x , y_{0}\right) &= F_{221}\! \left(x , y_{0}\right)\\ F_{243}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{244}\! \left(x , y_{0}\right)\\ F_{244}\! \left(x , y_{0}\right) &= F_{242}\! \left(x , y_{0}\right)+F_{245}\! \left(x , y_{0}\right)\\ F_{245}\! \left(x , y_{0}\right) &= F_{194}\! \left(x , y_{0}\right)+F_{221}\! \left(x , y_{0}\right)\\ F_{246}\! \left(x , y_{0}\right) &= F_{247}\! \left(x , y_{0}\right)\\ F_{247}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{248}\! \left(x , y_{0}\right)\\ F_{248}\! \left(x , y_{0}\right) &= F_{1571}\! \left(x , y_{0}\right)+F_{249}\! \left(x , y_{0}\right)\\ F_{249}\! \left(x , y_{0}\right) &= F_{1567}\! \left(x , y_{0}\right)+F_{250}\! \left(x , y_{0}\right)\\ F_{250}\! \left(x , y_{0}\right) &= F_{251}\! \left(x , 1, y_{0}\right)\\ F_{251}\! \left(x , y_{0}, y_{1}\right) &= F_{252}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{252}\! \left(x , y_{0}, y_{1}\right) &= F_{253}\! \left(x , y_{0}, y_{1}\right)\\ F_{253}\! \left(x , y_{0}, y_{1}\right) &= F_{254}\! \left(x , y_{1}\right)+F_{256}\! \left(x , y_{0}, y_{1}\right)\\ F_{254}\! \left(x , y_{0}\right) &= -\frac{-F_{255}\! \left(x , y_{0}\right) y_{0}+F_{255}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{255}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right)+F_{193}\! \left(x , y_{0}\right)\\ F_{256}\! \left(x , y_{0}, y_{1}\right) &= F_{257}\! \left(x , y_{0}, y_{1}\right)\\ F_{257}\! \left(x , y_{0}, y_{1}\right) &= F_{258}\! \left(x , y_{0}\right) F_{259}\! \left(x , y_{0}, y_{1}\right)\\ F_{258}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{259}\! \left(x , y_{0}, y_{1}\right) &= F_{260}\! \left(x , y_{0}, y_{1}\right)\\ F_{261}\! \left(x , y_{0}, y_{1}\right) &= F_{260}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{261}\! \left(x , y_{0}, y_{1}\right) &= F_{262}\! \left(x , y_{0}, y_{1}\right)\\ F_{262}\! \left(x , y_{0}, y_{1}\right) &= F_{263}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{263}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1563}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{264}\! \left(x , y_{1}, y_{2}\right)\\ F_{264}\! \left(x , y_{0}, y_{1}\right) &= F_{265}\! \left(x , y_{1}\right)+F_{274}\! \left(x , y_{0}, y_{1}\right)\\ F_{265}\! \left(x , y_{0}\right) &= F_{266}\! \left(x , y_{0}\right)\\ F_{266}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{267}\! \left(x , y_{0}\right)\\ F_{267}\! \left(x , y_{0}\right) &= F_{268}\! \left(x , 1, y_{0}\right)\\ F_{268}\! \left(x , y_{0}, y_{1}\right) &= F_{269}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{269}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{270}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\ F_{270}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{271}\! \left(x , y_{0}, y_{1}\right)+F_{293}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{271}\! \left(x , y_{0}, y_{1}\right) &= F_{272}\! \left(x , y_{1}\right)+F_{273}\! \left(x , y_{0}, y_{1}\right)\\ F_{272}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right)+F_{265}\! \left(x , y_{0}\right)\\ F_{273}\! \left(x , y_{0}, y_{1}\right) &= F_{193}\! \left(x , y_{0}\right)+F_{274}\! \left(x , y_{0}, y_{1}\right)\\ F_{274}\! \left(x , y_{0}, y_{1}\right) &= F_{275}\! \left(x , y_{0}, y_{1}\right)\\ F_{275}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{276}\! \left(x , y_{0}, y_{1}\right)\\ F_{276}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{277}\! \left(x , 1, y_{1}\right)-F_{277}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{277}\! \left(x , y_{0}, y_{1}\right) &= F_{273}\! \left(x , y_{0}, y_{1}\right)+F_{278}\! \left(x , y_{0}, y_{1}\right)\\ F_{278}\! \left(x , y_{0}, y_{1}\right) &= F_{279}\! \left(x , y_{0}, y_{1}\right)\\ F_{279}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{280}\! \left(x , y_{0}, y_{1}\right)\\ F_{280}\! \left(x , y_{0}, y_{1}\right) &= F_{1559}\! \left(x , y_{0}, y_{1}\right)+F_{281}\! \left(x , y_{0}, y_{1}\right)\\ F_{281}\! \left(x , y_{0}, y_{1}\right) &= F_{282}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{282}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{283}\! \left(x , y_{0}, y_{1}, y_{1} y_{2}\right)\\ F_{283}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{284}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{284}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{0}\right) F_{285}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{285}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1253}\! \left(x , y_{0}, y_{1}\right)+F_{286}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{286}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1557}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{287}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{287}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{288}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{982}\! \left(x , y_{0}, y_{2}\right)\\ F_{288}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{289}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{289}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{290}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{289}\! \left(x , y_{0}, y_{2}, y_{1}\right)+F_{739}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{291}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1556}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{290}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{292}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{2}\right) F_{291}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{292}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{293}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{293}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{294}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{294}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{2}\right) F_{295}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{295}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1554}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{296}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{296}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1421}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{297}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{297}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{298}\! \left(x , y_{1}, y_{2}\right)+F_{653}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{298}\! \left(x , y_{0}, y_{1}\right) &= F_{299}\! \left(x , y_{0}, y_{1}\right)+F_{300}\! \left(x , y_{0}, y_{1}\right)\\ F_{299}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{272}\! \left(x , y_{1}\right)\\ F_{300}\! \left(x , y_{0}, y_{1}\right) &= F_{301}\! \left(x , y_{0}, y_{1}\right)\\ F_{301}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{302}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{303}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{302}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{303}\! \left(x , y_{0}, y_{1}\right) &= F_{304}\! \left(x , y_{0}, y_{1}\right)\\ F_{304}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{305}\! \left(x , y_{1}, y_{0}\right) F_{4}\! \left(x \right)\\ F_{306}\! \left(x , y_{0}, y_{1}\right) &= F_{305}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{306}\! \left(x , y_{0}, y_{1}\right) &= F_{307}\! \left(x , y_{0}, y_{1}\right)\\ F_{308}\! \left(x , y_{0}, y_{1}\right) &= F_{307}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{309}\! \left(x , y_{0}, y_{1}\right) &= F_{308}\! \left(x , y_{0}, y_{1}\right)+F_{477}\! \left(x , y_{0}, y_{1}\right)\\ F_{309}\! \left(x , y_{0}, y_{1}\right) &= F_{310}\! \left(x , y_{0}, y_{1}\right)\\ F_{310}\! \left(x , y_{0}, y_{1}\right) &= F_{311}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{312}\! \left(x , y_{0}, y_{1}\right) &= F_{311}\! \left(x , y_{0}, y_{1}\right)+F_{441}\! \left(x , y_{0}, y_{1}\right)\\ F_{313}\! \left(x , y_{0}, y_{1}\right) &= F_{312}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{313}\! \left(x , y_{0}, y_{1}\right) &= F_{314}\! \left(x , y_{0}, y_{1}\right)\\ F_{314}\! \left(x , y_{0}, y_{1}\right) &= F_{315}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{315}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{316}\! \left(x , y_{0}, y_{1}\right)+F_{438}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{316}\! \left(x , y_{0}, y_{1}\right) &= F_{317}\! \left(x , y_{0}\right)+F_{434}\! \left(x , y_{0}, y_{1}\right)\\ F_{317}\! \left(x , y_{0}\right) &= F_{318}\! \left(x , y_{0}\right)+F_{397}\! \left(x , y_{0}\right)\\ F_{318}\! \left(x , y_{0}\right) &= F_{319}\! \left(x , 1, y_{0}\right)\\ F_{319}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{320}\! \left(x , y_{0}, y_{1}\right)\\ F_{320}\! \left(x , y_{0}, y_{1}\right) &= F_{321}\! \left(x , y_{0}, y_{1}\right)\\ F_{321}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{322}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{322}\! \left(x , y_{0}, y_{1}\right) &= F_{323}\! \left(x , y_{1}\right)+F_{324}\! \left(x , y_{0}, y_{1}\right)\\ F_{323}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{194}\! \left(x , y_{0}\right)\\ F_{324}\! \left(x , y_{0}, y_{1}\right) &= F_{325}\! \left(x , y_{0}\right)+F_{336}\! \left(x , y_{0}, y_{1}\right)\\ F_{325}\! \left(x , y_{0}\right) &= F_{326}\! \left(x , y_{0}\right)\\ F_{326}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{327}\! \left(x , y_{0}\right)\\ F_{327}\! \left(x , y_{0}\right) &= F_{201}\! \left(x , y_{0}\right)+F_{328}\! \left(x , y_{0}\right)\\ F_{328}\! \left(x , y_{0}\right) &= F_{325}\! \left(x , y_{0}\right)+F_{329}\! \left(x , y_{0}\right)\\ F_{329}\! \left(x , y_{0}\right) &= y_{0} F_{330}\! \left(x , y_{0}\right)\\ F_{330}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{331}\! \left(x , y_{0}\right)+F_{335}\! \left(x , y_{0}\right)\\ F_{331}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{332}\! \left(x , y_{0}\right)\\ F_{332}\! \left(x , y_{0}\right) &= F_{333}\! \left(x , y_{0}\right)+F_{334}\! \left(x , y_{0}\right)\\ F_{333}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right)\\ F_{334}\! \left(x , y_{0}\right) &= F_{330}\! \left(x , y_{0}\right)\\ F_{335}\! \left(x , y_{0}\right) &= F_{325}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{336}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{337}\! \left(x , y_{0}, y_{1}\right)+F_{342}\! \left(x , y_{0}, y_{1}\right)\\ F_{337}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{338}\! \left(x , y_{0}, y_{1}\right)\\ F_{338}\! \left(x , y_{0}, y_{1}\right) &= F_{339}\! \left(x , y_{0}, y_{1}\right)+F_{340}\! \left(x , y_{0}, y_{1}\right)\\ F_{339}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right)\\ F_{340}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right)\\ F_{341}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{330}\! \left(x , y_{0}\right)\\ F_{342}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{343}\! \left(x , y_{0}, y_{1}\right)\\ F_{343}\! \left(x , y_{0}, y_{1}\right) &= F_{344}\! \left(x , y_{0}, y_{1}\right)+F_{350}\! \left(x , y_{0}, y_{1}\right)\\ F_{344}\! \left(x , y_{0}, y_{1}\right) &= F_{325}\! \left(x , y_{0}\right)+F_{345}\! \left(x , y_{0}, y_{1}\right)\\ F_{345}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{337}\! \left(x , y_{0}, y_{1}\right)+F_{346}\! \left(x , y_{0}, y_{1}\right)\\ F_{346}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{347}\! \left(x , y_{0}, y_{1}\right)\\ F_{347}\! \left(x , y_{0}, y_{1}\right) &= F_{348}\! \left(x , y_{0}, y_{1}\right)+F_{349}\! \left(x , y_{0}, y_{1}\right)\\ F_{348}\! \left(x , y_{0}, y_{1}\right) &= F_{325}\! \left(x , y_{0}\right)+F_{341}\! \left(x , y_{0}, y_{1}\right)\\ F_{349}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right)\\ F_{350}\! \left(x , y_{0}, y_{1}\right) &= F_{336}\! \left(x , y_{0}, y_{1}\right)+F_{351}\! \left(x , y_{0}, y_{1}\right)\\ F_{351}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{352}\! \left(x , y_{0}, y_{1}\right)+F_{353}\! \left(x , y_{0}, y_{1}\right)+F_{394}\! \left(x , y_{0}, y_{1}\right)\\ F_{352}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{353}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{354}\! \left(x , y_{0}, y_{1}\right)\\ F_{354}\! \left(x , y_{0}, y_{1}\right) &= F_{355}\! \left(x , y_{0}, y_{1}\right)+F_{361}\! \left(x , y_{0}, y_{1}\right)\\ F_{355}\! \left(x , y_{0}, y_{1}\right) &= F_{345}\! \left(x , y_{0}, y_{1}\right)+F_{356}\! \left(x , y_{0}, y_{1}\right)\\ F_{356}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{352}\! \left(x , y_{0}, y_{1}\right)+F_{357}\! \left(x , y_{0}, y_{1}\right)+F_{359}\! \left(x , y_{0}, y_{1}\right)\\ F_{357}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{358}\! \left(x , y_{0}, y_{1}\right)\\ F_{358}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right)\\ F_{359}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{360}\! \left(x , y_{0}, y_{1}\right)\\ F_{360}\! \left(x , y_{0}, y_{1}\right) &= F_{349}\! \left(x , y_{0}, y_{1}\right)\\ F_{361}\! \left(x , y_{0}, y_{1}\right) &= F_{351}\! \left(x , y_{0}, y_{1}\right)+F_{362}\! \left(x , y_{0}, y_{1}\right)\\ F_{362}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{363}\! \left(x , y_{0}, y_{1}\right)+F_{364}\! \left(x , y_{0}, y_{1}\right)+F_{368}\! \left(x , y_{0}, y_{1}\right)+F_{391}\! \left(x , y_{0}, y_{1}\right)\\ F_{363}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{364}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{365}\! \left(x , y_{0}, y_{1}\right)\\ F_{365}\! \left(x , y_{0}, y_{1}\right) &= F_{366}\! \left(x , y_{0}, y_{1}\right)+F_{367}\! \left(x , y_{0}, y_{1}\right)\\ F_{366}\! \left(x , y_{0}, y_{1}\right) &= F_{356}\! \left(x , y_{0}, y_{1}\right)\\ F_{367}\! \left(x , y_{0}, y_{1}\right) &= F_{362}\! \left(x , y_{0}, y_{1}\right)\\ F_{368}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{369}\! \left(x , y_{0}, y_{1}\right)\\ F_{369}\! \left(x , y_{0}, y_{1}\right) &= F_{370}\! \left(x , y_{0}, y_{1}\right)\\ F_{370}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{371}\! \left(x , y_{0}, y_{1}\right)\\ F_{371}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{372}\! \left(x , y_{0}, y_{1}\right)+F_{373}\! \left(x , y_{0}, y_{1}\right)+F_{390}\! \left(x , y_{0}, y_{1}\right)\\ F_{372}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{373}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{374}\! \left(x , y_{0}, y_{1}\right)\\ F_{374}\! \left(x , y_{0}, y_{1}\right) &= F_{375}\! \left(x , y_{0}, y_{1}\right)+F_{380}\! \left(x , y_{0}, y_{1}\right)\\ F_{375}\! \left(x , y_{0}, y_{1}\right) &= F_{330}\! \left(x , y_{0}\right)+F_{376}\! \left(x , y_{0}, y_{1}\right)\\ F_{376}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{372}\! \left(x , y_{0}, y_{1}\right)+F_{377}\! \left(x , y_{0}, y_{1}\right)+F_{379}\! \left(x , y_{0}, y_{1}\right)\\ F_{377}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{378}\! \left(x , y_{0}, y_{1}\right)\\ F_{378}\! \left(x , y_{0}, y_{1}\right) &= F_{330}\! \left(x , y_{0}\right)\\ F_{379}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{380}\! \left(x , y_{0}, y_{1}\right) &= F_{371}\! \left(x , y_{0}, y_{1}\right)+F_{381}\! \left(x , y_{0}, y_{1}\right)\\ F_{381}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x \right)+F_{382}\! \left(x , y_{0}, y_{1}\right)+F_{383}\! \left(x , y_{0}, y_{1}\right)+F_{387}\! \left(x , y_{0}, y_{1}\right)+F_{389}\! \left(x , y_{0}, y_{1}\right)\\ F_{382}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{383}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{384}\! \left(x , y_{0}, y_{1}\right)\\ F_{384}\! \left(x , y_{0}, y_{1}\right) &= F_{385}\! \left(x , y_{0}, y_{1}\right)+F_{386}\! \left(x , y_{0}, y_{1}\right)\\ F_{385}\! \left(x , y_{0}, y_{1}\right) &= F_{376}\! \left(x , y_{0}, y_{1}\right)\\ F_{386}\! \left(x , y_{0}, y_{1}\right) &= F_{381}\! \left(x , y_{0}, y_{1}\right)\\ F_{387}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{388}\! \left(x , y_{0}, y_{1}\right)\\ F_{388}\! \left(x , y_{0}, y_{1}\right) &= F_{371}\! \left(x , y_{0}, y_{1}\right)\\ F_{389}\! \left(x , y_{0}, y_{1}\right) &= F_{370}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{390}\! \left(x , y_{0}, y_{1}\right) &= F_{336}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{391}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{392}\! \left(x , y_{0}, y_{1}\right)\\ F_{392}\! \left(x , y_{0}, y_{1}\right) &= F_{393}\! \left(x , y_{0}, y_{1}\right)\\ F_{393}\! \left(x , y_{0}, y_{1}\right) &= F_{370}\! \left(x , y_{0}, y_{1}\right)\\ F_{394}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{395}\! \left(x , y_{0}, y_{1}\right)\\ F_{395}\! \left(x , y_{0}, y_{1}\right) &= F_{393}\! \left(x , y_{0}, y_{1}\right)+F_{396}\! \left(x , y_{0}, y_{1}\right)\\ F_{396}\! \left(x , y_{0}, y_{1}\right) &= F_{336}\! \left(x , y_{0}, y_{1}\right)+F_{370}\! \left(x , y_{0}, y_{1}\right)\\ F_{397}\! \left(x , y_{0}\right) &= F_{398}\! \left(x , 1, y_{0}\right)\\ F_{398}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{399}\! \left(x , y_{0}, y_{1}\right)\\ F_{399}\! \left(x , y_{0}, y_{1}\right) &= F_{400}\! \left(x , y_{0}, y_{1}\right)\\ F_{400}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{401}\! \left(x , y_{0}, y_{1}\right)\\ F_{402}\! \left(x , y_{0}, y_{1}\right) &= F_{262}\! \left(x , y_{0}, y_{1}\right)+F_{401}\! \left(x , y_{0}, y_{1}\right)\\ F_{403}\! \left(x , y_{0}, y_{1}\right) &= F_{402}\! \left(x , y_{0}, y_{1}\right)+F_{433}\! \left(x , y_{0}, y_{1}\right)\\ F_{404}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{403}\! \left(x , y_{0}, y_{1}\right)\\ F_{404}\! \left(x , y_{0}, y_{1}\right) &= F_{405}\! \left(x , y_{0}, y_{1}\right)\\ F_{405}\! \left(x , y_{0}, y_{1}\right) &= F_{406}\! \left(x , y_{0}, y_{1}\right)\\ F_{406}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{407}\! \left(x , y_{0}, y_{1}\right)\\ F_{407}\! \left(x , y_{0}, y_{1}\right) &= F_{408}\! \left(x , y_{0}, y_{1}\right)+F_{427}\! \left(x , y_{0}, y_{1}\right)\\ F_{408}\! \left(x , y_{0}, y_{1}\right) &= F_{409}\! \left(x , y_{0}, y_{1}\right)+F_{421}\! \left(x , y_{0}, y_{1}\right)\\ F_{409}\! \left(x , y_{0}, y_{1}\right) &= F_{410}\! \left(x , y_{0}, y_{1}\right)+F_{412}\! \left(x , y_{0}, y_{1}\right)\\ F_{410}\! \left(x , y_{0}, y_{1}\right) &= F_{405}\! \left(x , y_{0}, y_{1}\right)+F_{411}\! \left(x , y_{1}\right)\\ F_{411}\! \left(x , y_{0}\right) &= F_{189}\! \left(x , y_{0}\right)+F_{2}\! \left(x \right)\\ F_{412}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{413}\! \left(x , y_{0}, y_{1}\right)\\ F_{413}\! \left(x , y_{0}, y_{1}\right) &= F_{414}\! \left(x , y_{0}, y_{1}\right)\\ F_{414}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{415}\! \left(x , y_{0}, y_{1}\right)\\ F_{415}\! \left(x , y_{0}, y_{1}\right) &= F_{416}\! \left(x , y_{0}, y_{1}\right)\\ F_{416}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{417}\! \left(x , y_{0}, y_{1}\right)\\ F_{417}\! \left(x , y_{0}, y_{1}\right) &= F_{248}\! \left(x , y_{1}\right)+F_{418}\! \left(x , y_{0}, y_{1}\right)\\ F_{418}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{419}\! \left(x , 1, y_{1}\right)-F_{419}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right)\right)}{-y_{1}+y_{0}}\\ F_{419}\! \left(x , y_{0}, y_{1}\right) &= F_{420}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{420}\! \left(x , y_{0}, y_{1}\right) &= F_{256}\! \left(x , y_{0}, y_{1}\right)\\ F_{421}\! \left(x , y_{0}, y_{1}\right) &= F_{262}\! \left(x , y_{0}, y_{1}\right)+F_{422}\! \left(x , y_{0}, y_{1}\right)\\ F_{422}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{423}\! \left(x , y_{0}, y_{1}\right)\\ F_{423}\! \left(x , y_{0}, y_{1}\right) &= F_{424}\! \left(x , y_{0}, y_{1}\right)\\ F_{424}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{425}\! \left(x , y_{0}, y_{1}\right)\\ F_{425}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{426}\! \left(x , 1, y_{1}\right) y_{1}-F_{426}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{426}\! \left(x , y_{0}, y_{1}\right) &= F_{262}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{427}\! \left(x , y_{0}, y_{1}\right) &= F_{398}\! \left(x , y_{0}, y_{1}\right)+F_{428}\! \left(x , y_{0}, y_{1}\right)\\ F_{428}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{429}\! \left(x , y_{0}, y_{1}\right)\\ F_{429}\! \left(x , y_{0}, y_{1}\right) &= F_{430}\! \left(x , y_{0}, y_{1}\right)\\ F_{430}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{431}\! \left(x , y_{0}, y_{1}\right)\\ F_{431}\! \left(x , y_{0}, y_{1}\right) &= F_{432}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{432}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{262}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{262}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{433}\! \left(x , y_{0}, y_{1}\right) &= F_{412}\! \left(x , y_{0}, y_{1}\right)+F_{422}\! \left(x , y_{0}, y_{1}\right)\\ F_{434}\! \left(x , y_{0}, y_{1}\right) &= F_{435}\! \left(x , y_{0}, y_{1}\right)\\ F_{435}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{436}\! \left(x , y_{0}, y_{1}\right)\\ F_{436}\! \left(x , y_{0}, y_{1}\right) &= F_{437}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{437}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{263}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{263}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{438}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{439}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{439}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{440}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{440}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{315}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{315}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{442}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{441}\! \left(x , y_{0}, y_{1}\right)\\ F_{442}\! \left(x , y_{0}, y_{1}\right) &= F_{443}\! \left(x , y_{0}, y_{1}\right)\\ F_{443}\! \left(x , y_{0}, y_{1}\right) &= F_{444}\! \left(x , y_{0}\right)+F_{474}\! \left(x , y_{0}, y_{1}\right)\\ F_{444}\! \left(x , y_{0}\right) &= F_{445}\! \left(x \right)+F_{469}\! \left(x , y_{0}\right)\\ F_{445}\! \left(x \right) &= F_{446}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{447}\! \left(x \right) &= F_{448}\! \left(x \right)+F_{449}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{450}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{4}\! \left(x \right) F_{451}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)+F_{457}\! \left(x \right)\\ F_{452}\! \left(x \right) &= F_{453}\! \left(x \right)\\ F_{453}\! \left(x \right) &= F_{4}\! \left(x \right) F_{454}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{455}\! \left(x \right)+F_{468}\! \left(x \right)\\ F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)+F_{457}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{452}\! \left(x \right)\\ F_{457}\! \left(x \right) &= F_{458}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{4}\! \left(x \right) F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{455}\! \left(x \right)+F_{460}\! \left(x \right)\\ F_{460}\! \left(x \right) &= F_{461}\! \left(x , 1\right)\\ F_{461}\! \left(x , y_{0}\right) &= -\frac{-F_{462}\! \left(x , y_{0}\right) y_{0}+F_{462}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{462}\! \left(x , y_{0}\right) &= F_{463}\! \left(x , y_{0}, 1\right)\\ F_{463}\! \left(x , y_{0}, y_{1}\right) &= F_{265}\! \left(x , y_{1}\right)+F_{464}\! \left(x , y_{0}, y_{1}\right)\\ F_{464}\! \left(x , y_{0}, y_{1}\right) &= F_{465}\! \left(x , y_{0}, y_{1}\right)\\ F_{465}\! \left(x , y_{0}, y_{1}\right) &= F_{258}\! \left(x , y_{0}\right) F_{466}\! \left(x , y_{0}, y_{1}\right)\\ F_{466}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{467}\! \left(x , y_{0}, 1\right)-F_{467}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{467}\! \left(x , y_{0}, y_{1}\right) &= F_{463}\! \left(x , y_{0}, y_{1}\right)\\ F_{468}\! \left(x \right) &= F_{462}\! \left(x , 1\right)\\ F_{469}\! \left(x , y_{0}\right) &= F_{470}\! \left(x , 1, y_{0}\right)\\ F_{470}\! \left(x , y_{0}, y_{1}\right) &= F_{471}\! \left(x , y_{0}, y_{1}\right)\\ F_{471}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{472}\! \left(x , y_{0}, y_{1}\right)\\ F_{472}\! \left(x , y_{0}, y_{1}\right) &= F_{473}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{473}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{463}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{463}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{474}\! \left(x , y_{0}, y_{1}\right) &= F_{475}\! \left(x , y_{1}, y_{0}\right)\\ F_{475}\! \left(x , y_{0}, y_{1}\right) &= F_{258}\! \left(x , y_{0}\right) F_{476}\! \left(x , y_{0}, y_{1}\right)\\ F_{476}\! \left(x , y_{0}, y_{1}\right) &= F_{314}\! \left(x , y_{1}, y_{0}\right)\\ F_{478}\! \left(x , y_{0}, y_{1}\right) &= F_{1553}\! \left(x , y_{0}, y_{1}\right)+F_{477}\! \left(x , y_{0}, y_{1}\right)\\ F_{478}\! \left(x , y_{0}, y_{1}\right) &= F_{479}\! \left(x , y_{0}, y_{1}\right)\\ F_{479}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{480}\! \left(x , y_{0}, y_{1}\right)\\ F_{480}\! \left(x , y_{0}, y_{1}\right) &= F_{1547}\! \left(x , y_{0}, y_{1}\right)+F_{481}\! \left(x , y_{0}, y_{1}\right)\\ F_{481}\! \left(x , y_{0}, y_{1}\right) &= F_{482}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{482}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{483}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{483}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{484}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{484}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{258}\! \left(x , y_{0}\right) F_{485}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{485}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{486}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{486}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{486}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1542}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{487}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{487}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{488}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{488}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{489}\! \left(x , y_{1}, y_{2}\right)+F_{696}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{490}\! \left(x , y_{0}, y_{1}\right) &= F_{1538}\! \left(x , y_{0}, y_{1}\right)+F_{489}\! \left(x , y_{0}, y_{1}\right)\\ F_{490}\! \left(x , y_{0}, y_{1}\right) &= F_{491}\! \left(x , y_{0}\right)+F_{503}\! \left(x , y_{0}, y_{1}\right)\\ F_{491}\! \left(x , y_{0}\right) &= F_{492}\! \left(x , 1, y_{0}\right)\\ F_{492}\! \left(x , y_{0}, y_{1}\right) &= F_{272}\! \left(x , y_{1}\right)+F_{493}\! \left(x , y_{0}, y_{1}\right)\\ F_{493}\! \left(x , y_{0}, y_{1}\right) &= F_{494}\! \left(x , y_{0}, y_{1}\right)+F_{495}\! \left(x , y_{0}, y_{1}\right)\\ F_{494}\! \left(x , y_{0}, y_{1}\right) &= F_{114}\! \left(x , y_{0}\right) F_{184}\! \left(x , y_{1}\right)\\ F_{495}\! \left(x , y_{0}, y_{1}\right) &= F_{496}\! \left(x , y_{0}, y_{1}\right)\\ F_{496}\! \left(x , y_{0}, y_{1}\right) &= F_{258}\! \left(x , y_{0}\right) F_{497}\! \left(x , y_{0}, y_{1}\right)\\ F_{497}\! \left(x , y_{0}, y_{1}\right) &= F_{498}\! \left(x , y_{0}, y_{1}\right)+F_{502}\! \left(x , y_{0}, y_{1}\right)\\ F_{498}\! \left(x , y_{0}, y_{1}\right) &= F_{499}\! \left(x , y_{0}, y_{1}\right)\\ F_{499}\! \left(x , y_{0}, y_{1}\right) &= F_{495}\! \left(x , y_{0}, y_{1}\right)+F_{500}\! \left(x , y_{1}\right)\\ F_{500}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{501}\! \left(x , y_{0}\right)\\ F_{265}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{501}\! \left(x , y_{0}\right)\\ F_{502}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{467}\! \left(x , y_{0}, 1\right)-F_{467}\! \left(x , y_{0}, y_{1}\right)}{-1+y_{1}}\\ F_{503}\! \left(x , y_{0}, y_{1}\right) &= F_{504}\! \left(x , y_{0}, y_{1}\right)\\ F_{505}\! \left(x , y_{0}, y_{1}\right) &= F_{1537}\! \left(x , y_{0}\right)+F_{504}\! \left(x , y_{0}, y_{1}\right)\\ F_{505}\! \left(x , y_{0}, y_{1}\right) &= F_{1533}\! \left(x , y_{0}, y_{1}\right)+F_{506}\! \left(x , y_{0}, y_{1}\right)\\ F_{507}\! \left(x , y_{0}, y_{1}\right) &= F_{1530}\! \left(x , y_{0}, y_{1}\right)+F_{506}\! \left(x , y_{0}, y_{1}\right)\\ F_{507}\! \left(x , y_{0}, y_{1}\right) &= F_{1527}\! \left(x , y_{0}, y_{1}\right)+F_{508}\! \left(x , y_{0}\right)\\ F_{508}\! \left(x , y_{0}\right) &= F_{1497}\! \left(x , y_{0}\right)+F_{509}\! \left(x , y_{0}\right)\\ F_{509}\! \left(x , y_{0}\right) &= F_{272}\! \left(x , y_{0}\right)+F_{510}\! \left(x , y_{0}\right)\\ F_{511}\! \left(x , y_{0}, y_{1}\right) &= F_{1232}\! \left(x , y_{0}, y_{1}\right)+F_{510}\! \left(x , y_{1}\right)\\ F_{511}\! \left(x , y_{0}, y_{1}\right) &= F_{512}\! \left(x , y_{0}, y_{1}\right)\\ F_{512}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{513}\! \left(x , y_{0}, y_{1}\right)\\ F_{513}\! \left(x , y_{0}, y_{1}\right) &= F_{1495}\! \left(x , y_{0}, y_{1}\right)+F_{514}\! \left(x , y_{0}, y_{1}\right)\\ F_{514}\! \left(x , y_{0}, y_{1}\right) &= F_{1475}\! \left(x , y_{0}, y_{1}\right)+F_{515}\! \left(x , y_{0}, y_{1}\right)\\ F_{515}\! \left(x , y_{0}, y_{1}\right) &= F_{1474}\! \left(x , y_{0}, y_{1}\right)+F_{516}\! \left(x , y_{0}\right)\\ F_{516}\! \left(x , y_{0}\right) &= F_{1471}\! \left(x , y_{0}\right)+F_{517}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{518}\! \left(x , 1\right)\\ F_{518}\! \left(x , y_{0}\right) &= F_{519}\! \left(x , y_{0}\right)+F_{520}\! \left(x , y_{0}\right)\\ F_{519}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right) F_{113}\! \left(x , y_{0}\right)\\ F_{521}\! \left(x , y_{0}\right) &= F_{1470}\! \left(x , y_{0}\right)+F_{520}\! \left(x , y_{0}\right)\\ F_{522}\! \left(x , y_{0}\right) &= F_{1444}\! \left(x , y_{0}\right) F_{521}\! \left(x , y_{0}\right)\\ F_{523}\! \left(x , y_{0}\right) &= F_{1469}\! \left(x , y_{0}\right)+F_{522}\! \left(x , y_{0}\right)\\ F_{524}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{523}\! \left(x , y_{0}\right)\\ F_{524}\! \left(x , y_{0}\right) &= F_{525}\! \left(x , y_{0}\right)\\ F_{525}\! \left(x , y_{0}\right) &= F_{526}\! \left(x , y_{0}\right)+F_{544}\! \left(x , y_{0}\right)\\ F_{526}\! \left(x , y_{0}\right) &= F_{527}\! \left(x , y_{0}\right)\\ F_{527}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{528}\! \left(x , y_{0}\right)\\ F_{528}\! \left(x , y_{0}\right) &= F_{529}\! \left(x , y_{0}\right)+F_{539}\! \left(x , y_{0}\right)\\ F_{529}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{530}\! \left(x , y_{0}\right)\\ F_{530}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{531}\! \left(x , y_{0}\right)\\ F_{531}\! \left(x , y_{0}\right) &= F_{532}\! \left(x , y_{0}\right)\\ F_{532}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{533}\! \left(x , y_{0}\right)\\ F_{533}\! \left(x , y_{0}\right) &= F_{530}\! \left(x , y_{0}\right)+F_{534}\! \left(x , y_{0}\right)\\ F_{534}\! \left(x , y_{0}\right) &= F_{535}\! \left(x , 1, y_{0}\right)\\ F_{535}\! \left(x , y_{0}, y_{1}\right) &= F_{193}\! \left(x , y_{0}\right)+F_{536}\! \left(x , y_{0}, y_{1}\right)\\ F_{536}\! \left(x , y_{0}, y_{1}\right) &= F_{537}\! \left(x , y_{0}, y_{1}\right)\\ F_{537}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{538}\! \left(x , y_{0}, y_{1}\right)\\ F_{538}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{535}\! \left(x , 1, y_{1}\right)-F_{535}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{540}\! \left(x , y_{0}\right) &= F_{539}\! \left(x , y_{0}\right)+F_{542}\! \left(x , y_{0}\right)\\ F_{541}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{540}\! \left(x , y_{0}\right)\\ F_{541}\! \left(x , y_{0}\right) &= F_{530}\! \left(x , y_{0}\right)\\ F_{542}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{543}\! \left(x , y_{0}\right)\\ F_{543}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right)+F_{530}\! \left(x , y_{0}\right)\\ F_{544}\! \left(x , y_{0}\right) &= F_{545}\! \left(x , y_{0}\right)\\ F_{545}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{546}\! \left(x , y_{0}\right)\\ F_{546}\! \left(x , y_{0}\right) &= F_{1443}\! \left(x , y_{0}\right)+F_{547}\! \left(x , y_{0}\right)\\ F_{547}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right) F_{548}\! \left(x , y_{0}\right)\\ F_{548}\! \left(x , y_{0}\right) &= F_{549}\! \left(x , y_{0}\right)+F_{552}\! \left(x , y_{0}\right)\\ F_{549}\! \left(x , y_{0}\right) &= F_{550}\! \left(x , y_{0}\right)+F_{551}\! \left(x , y_{0}\right)\\ F_{550}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{526}\! \left(x , y_{0}\right)\\ F_{551}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{530}\! \left(x , y_{0}\right)\\ F_{552}\! \left(x , y_{0}\right) &= F_{1438}\! \left(x , y_{0}\right)+F_{553}\! \left(x , y_{0}\right)\\ F_{553}\! \left(x , y_{0}\right) &= F_{554}\! \left(x , 1, y_{0}\right)\\ F_{554}\! \left(x , y_{0}, y_{1}\right) &= F_{193}\! \left(x , y_{0}\right)+F_{555}\! \left(x , y_{0}, y_{1}\right)\\ F_{555}\! \left(x , y_{0}, y_{1}\right) &= F_{556}\! \left(x , y_{0}, y_{1}\right)\\ F_{556}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{557}\! \left(x , y_{0}, y_{1}\right)\\ F_{557}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{558}\! \left(x , 1, y_{1}\right)-F_{558}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{558}\! \left(x , y_{0}, y_{1}\right) &= F_{554}\! \left(x , y_{0}, y_{1}\right)+F_{559}\! \left(x , y_{0}, y_{1}\right)\\ F_{559}\! \left(x , y_{0}, y_{1}\right) &= F_{560}\! \left(x , y_{0}, y_{1}\right)\\ F_{560}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{561}\! \left(x , y_{0}, y_{1}\right)\\ F_{562}\! \left(x , y_{0}, y_{1}\right) &= F_{1436}\! \left(x , y_{0}, y_{1}\right)+F_{561}\! \left(x , y_{0}, y_{1}\right)\\ F_{563}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{562}\! \left(x , y_{0}, y_{1}\right)\\ F_{563}\! \left(x , y_{0}, y_{1}\right) &= F_{564}\! \left(x , y_{0}, y_{1}\right)\\ F_{564}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{565}\! \left(x , y_{0}, y_{1}\right)\\ F_{565}\! \left(x , y_{0}, y_{1}\right) &= F_{1432}\! \left(x , y_{0}, y_{1}\right)+F_{566}\! \left(x , y_{0}, y_{1}\right)\\ F_{566}\! \left(x , y_{0}, y_{1}\right) &= F_{567}\! \left(x , y_{0}, y_{1}\right)\\ F_{567}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{568}\! \left(x , y_{0}, y_{1}\right)\\ F_{568}\! \left(x , y_{0}, y_{1}\right) &= F_{1253}\! \left(x , y_{0}, y_{1}\right)+F_{569}\! \left(x , y_{0}, y_{1}\right)\\ F_{569}\! \left(x , y_{0}, y_{1}\right) &= F_{1426}\! \left(x , y_{0}, y_{1}\right)+F_{570}\! \left(x , y_{1}\right)\\ F_{571}\! \left(x , y_{0}\right) &= F_{1425}\! \left(x , y_{0}\right)+F_{570}\! \left(x , y_{0}\right)\\ F_{572}\! \left(x , y_{0}\right) &= F_{571}\! \left(x , y_{0}\right)+F_{760}\! \left(x , y_{0}\right)\\ F_{573}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{572}\! \left(x , y_{0}\right)\\ F_{573}\! \left(x , y_{0}\right) &= F_{574}\! \left(x , y_{0}\right)\\ F_{574}\! \left(x , y_{0}\right) &= F_{575}\! \left(x , 1, y_{0}\right)\\ F_{575}\! \left(x , y_{0}, y_{1}\right) &= F_{576}\! \left(x , y_{0}\right)+F_{640}\! \left(x , y_{0}, y_{1}\right)\\ F_{576}\! \left(x , y_{0}\right) &= F_{577}\! \left(x , y_{0}\right)+F_{639}\! \left(x , y_{0}\right)\\ F_{577}\! \left(x , y_{0}\right) &= F_{578}\! \left(x , y_{0}\right)+F_{91}\! \left(x \right)\\ F_{578}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{579}\! \left(x , y_{0}\right)+F_{584}\! \left(x , y_{0}\right)\\ F_{579}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{580}\! \left(x , y_{0}\right)\\ F_{580}\! \left(x , y_{0}\right) &= F_{581}\! \left(x , y_{0}\right)+F_{582}\! \left(x , y_{0}\right)\\ F_{581}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right)\\ F_{582}\! \left(x , y_{0}\right) &= F_{583}\! \left(x , y_{0}\right)\\ F_{583}\! \left(x , y_{0}\right) &= y_{0} F_{95}\! \left(x \right)\\ F_{584}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{585}\! \left(x , y_{0}\right)\\ F_{585}\! \left(x , y_{0}\right) &= F_{586}\! \left(x , y_{0}\right)+F_{592}\! \left(x , y_{0}\right)\\ F_{586}\! \left(x , y_{0}\right) &= F_{587}\! \left(x , y_{0}\right)+F_{91}\! \left(x \right)\\ F_{587}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{579}\! \left(x , y_{0}\right)+F_{588}\! \left(x , y_{0}\right)\\ F_{588}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{589}\! \left(x , y_{0}\right)\\ F_{589}\! \left(x , y_{0}\right) &= F_{590}\! \left(x , y_{0}\right)+F_{591}\! \left(x , y_{0}\right)\\ F_{590}\! \left(x , y_{0}\right) &= F_{583}\! \left(x , y_{0}\right)+F_{91}\! \left(x \right)\\ F_{591}\! \left(x , y_{0}\right) &= F_{583}\! \left(x , y_{0}\right)\\ F_{592}\! \left(x , y_{0}\right) &= F_{578}\! \left(x , y_{0}\right)+F_{593}\! \left(x , y_{0}\right)\\ F_{593}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{594}\! \left(x , y_{0}\right)+F_{595}\! \left(x , y_{0}\right)+F_{636}\! \left(x , y_{0}\right)\\ F_{594}\! \left(x , y_{0}\right) &= 0\\ F_{595}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{596}\! \left(x , y_{0}\right)\\ F_{596}\! \left(x , y_{0}\right) &= F_{597}\! \left(x , y_{0}\right)+F_{603}\! \left(x , y_{0}\right)\\ F_{597}\! \left(x , y_{0}\right) &= F_{587}\! \left(x , y_{0}\right)+F_{598}\! \left(x , y_{0}\right)\\ F_{598}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{594}\! \left(x , y_{0}\right)+F_{599}\! \left(x , y_{0}\right)+F_{601}\! \left(x , y_{0}\right)\\ F_{599}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{600}\! \left(x , y_{0}\right)\\ F_{600}\! \left(x , y_{0}\right) &= F_{583}\! \left(x , y_{0}\right)\\ F_{601}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{602}\! \left(x , y_{0}\right)\\ F_{602}\! \left(x , y_{0}\right) &= F_{591}\! \left(x , y_{0}\right)\\ F_{603}\! \left(x , y_{0}\right) &= F_{593}\! \left(x , y_{0}\right)+F_{604}\! \left(x , y_{0}\right)\\ F_{604}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{605}\! \left(x , y_{0}\right)+F_{606}\! \left(x , y_{0}\right)+F_{610}\! \left(x , y_{0}\right)+F_{633}\! \left(x , y_{0}\right)\\ F_{605}\! \left(x , y_{0}\right) &= 0\\ F_{606}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{607}\! \left(x , y_{0}\right)\\ F_{607}\! \left(x , y_{0}\right) &= F_{608}\! \left(x , y_{0}\right)+F_{609}\! \left(x , y_{0}\right)\\ F_{608}\! \left(x , y_{0}\right) &= F_{598}\! \left(x , y_{0}\right)\\ F_{609}\! \left(x , y_{0}\right) &= F_{604}\! \left(x , y_{0}\right)\\ F_{610}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{611}\! \left(x , y_{0}\right)\\ F_{611}\! \left(x , y_{0}\right) &= F_{612}\! \left(x , y_{0}\right)\\ F_{612}\! \left(x , y_{0}\right) &= y_{0} F_{613}\! \left(x , y_{0}\right)\\ F_{613}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{614}\! \left(x , y_{0}\right)+F_{615}\! \left(x , y_{0}\right)+F_{632}\! \left(x , y_{0}\right)\\ F_{614}\! \left(x , y_{0}\right) &= 0\\ F_{615}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{616}\! \left(x , y_{0}\right)\\ F_{616}\! \left(x , y_{0}\right) &= F_{617}\! \left(x , y_{0}\right)+F_{622}\! \left(x , y_{0}\right)\\ F_{617}\! \left(x , y_{0}\right) &= F_{618}\! \left(x , y_{0}\right)+F_{95}\! \left(x \right)\\ F_{618}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{614}\! \left(x , y_{0}\right)+F_{619}\! \left(x , y_{0}\right)+F_{621}\! \left(x , y_{0}\right)\\ F_{619}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{620}\! \left(x , y_{0}\right)\\ F_{620}\! \left(x , y_{0}\right) &= F_{95}\! \left(x \right)\\ F_{621}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{583}\! \left(x , y_{0}\right)\\ F_{622}\! \left(x , y_{0}\right) &= F_{613}\! \left(x , y_{0}\right)+F_{623}\! \left(x , y_{0}\right)\\ F_{623}\! \left(x , y_{0}\right) &= F_{20}\! \left(x \right)+F_{624}\! \left(x , y_{0}\right)+F_{625}\! \left(x , y_{0}\right)+F_{629}\! \left(x , y_{0}\right)+F_{631}\! \left(x , y_{0}\right)\\ F_{624}\! \left(x , y_{0}\right) &= 0\\ F_{625}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{626}\! \left(x , y_{0}\right)\\ F_{626}\! \left(x , y_{0}\right) &= F_{627}\! \left(x , y_{0}\right)+F_{628}\! \left(x , y_{0}\right)\\ F_{627}\! \left(x , y_{0}\right) &= F_{618}\! \left(x , y_{0}\right)\\ F_{628}\! \left(x , y_{0}\right) &= F_{623}\! \left(x , y_{0}\right)\\ F_{629}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{630}\! \left(x , y_{0}\right)\\ F_{630}\! \left(x , y_{0}\right) &= F_{613}\! \left(x , y_{0}\right)\\ F_{631}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{612}\! \left(x , y_{0}\right)\\ F_{632}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{578}\! \left(x , y_{0}\right)\\ F_{633}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{634}\! \left(x , y_{0}\right)\\ F_{634}\! \left(x , y_{0}\right) &= F_{635}\! \left(x , y_{0}\right)\\ F_{635}\! \left(x , y_{0}\right) &= F_{612}\! \left(x , y_{0}\right)\\ F_{636}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{637}\! \left(x , y_{0}\right)\\ F_{637}\! \left(x , y_{0}\right) &= F_{635}\! \left(x , y_{0}\right)+F_{638}\! \left(x , y_{0}\right)\\ F_{638}\! \left(x , y_{0}\right) &= F_{578}\! \left(x , y_{0}\right)+F_{612}\! \left(x , y_{0}\right)\\ F_{639}\! \left(x , y_{0}\right) &= F_{405}\! \left(x , 1, y_{0}\right)\\ F_{640}\! \left(x , y_{0}, y_{1}\right) &= F_{641}\! \left(x , y_{0}, y_{1}\right)\\ F_{641}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{642}\! \left(x , y_{0}, y_{1}\right)\\ F_{642}\! \left(x , y_{0}, y_{1}\right) &= F_{643}\! \left(x , y_{0}, y_{1}\right)+F_{644}\! \left(x , y_{0}, y_{1}\right)\\ F_{643}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{575}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{575}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{644}\! \left(x , y_{0}, y_{1}\right) &= F_{645}\! \left(x , y_{0}, y_{1}\right)\\ F_{645}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{646}\! \left(x , y_{0}, y_{1}\right)\\ F_{646}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{647}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{647}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{647}\! \left(x , y_{0}, y_{1}\right) &= F_{648}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{648}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1422}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{649}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{649}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{650}\! \left(x , y_{1}, y_{2}\right)+F_{651}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{489}\! \left(x , y_{0}, y_{1}\right) &= F_{272}\! \left(x , y_{0}\right)+F_{650}\! \left(x , y_{0}, y_{1}\right)\\ F_{651}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{652}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{652}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{653}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{653}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{561}\! \left(x , y_{0}, y_{1}\right)+F_{654}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{654}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{655}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{655}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{258}\! \left(x , y_{0}\right) F_{656}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{656}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{2} \left(F_{657}\! \left(x , y_{0}, y_{1}, 1\right)-F_{657}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{2}}\\ F_{657}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{658}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{659}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1421}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{658}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{659}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1420}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{660}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{660}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{661}\! \left(x , y_{0}, y_{2}\right)\\ F_{662}\! \left(x , y_{0}, y_{1}\right) &= F_{661}\! \left(x , y_{0}, y_{1}\right)+F_{974}\! \left(x , y_{0}, y_{1}\right)\\ F_{662}\! \left(x , y_{0}, y_{1}\right) &= F_{663}\! \left(x , y_{0}, y_{1}\right)+F_{985}\! \left(x , y_{0}, y_{1}\right)\\ F_{663}\! \left(x , y_{0}, y_{1}\right) &= F_{1419}\! \left(x , y_{0}, y_{1}\right)+F_{664}\! \left(x , y_{1}\right)\\ F_{665}\! \left(x , y_{0}\right) &= F_{1416}\! \left(x , y_{0}\right)+F_{664}\! \left(x , y_{0}\right)\\ F_{666}\! \left(x , y_{0}\right) &= F_{665}\! \left(x , y_{0}\right)+F_{987}\! \left(x , y_{0}\right)\\ F_{666}\! \left(x , y_{0}\right) &= F_{667}\! \left(x , y_{0}\right)+F_{973}\! \left(x , y_{0}\right)\\ F_{667}\! \left(x , y_{0}\right) &= F_{668}\! \left(x , y_{0}\right)\\ F_{668}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{669}\! \left(x , y_{0}\right)\\ F_{670}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{669}\! \left(x , y_{0}\right)\\ F_{670}\! \left(x , y_{0}\right) &= F_{671}\! \left(x , y_{0}\right)\\ F_{672}\! \left(x , y_{0}\right) &= F_{671}\! \left(x , y_{0}\right)+F_{769}\! \left(x , y_{0}\right)\\ F_{672}\! \left(x , y_{0}\right) &= F_{540}\! \left(x , y_{0}\right)+F_{673}\! \left(x , y_{0}\right)\\ F_{674}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{673}\! \left(x , y_{0}\right)\\ F_{674}\! \left(x , y_{0}\right) &= F_{675}\! \left(x , y_{0}\right)\\ F_{675}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{676}\! \left(x , y_{0}\right)\\ F_{676}\! \left(x , y_{0}\right) &= F_{677}\! \left(x , y_{0}\right)\\ F_{677}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{678}\! \left(x , y_{0}\right)\\ F_{678}\! \left(x , y_{0}\right) &= F_{679}\! \left(x , y_{0}\right)+F_{760}\! \left(x , y_{0}\right)\\ F_{679}\! \left(x , y_{0}\right) &= F_{680}\! \left(x , y_{0}\right)+F_{753}\! \left(x , y_{0}\right)\\ F_{680}\! \left(x , y_{0}\right) &= F_{681}\! \left(x , y_{0}\right)+F_{756}\! \left(x , y_{0}\right)\\ F_{681}\! \left(x , y_{0}\right) &= F_{682}\! \left(x , y_{0}\right)+F_{744}\! \left(x , y_{0}\right)\\ F_{682}\! \left(x , y_{0}\right) &= F_{683}\! \left(x , y_{0}\right)+F_{706}\! \left(x , y_{0}\right)\\ F_{683}\! \left(x , y_{0}\right) &= F_{5}\! \left(x \right)+F_{684}\! \left(x , y_{0}\right)\\ F_{684}\! \left(x , y_{0}\right) &= F_{685}\! \left(x , y_{0}\right)\\ F_{685}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{686}\! \left(x , y_{0}\right)\\ F_{686}\! \left(x , y_{0}\right) &= F_{570}\! \left(x , y_{0}\right)+F_{687}\! \left(x , y_{0}\right)\\ F_{687}\! \left(x , y_{0}\right) &= F_{688}\! \left(x , y_{0}\right)\\ F_{688}\! \left(x , y_{0}\right) &= F_{689}\! \left(x , y_{0}, 1\right)\\ F_{689}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{690}\! \left(x , y_{0}, y_{0}\right)\\ F_{691}\! \left(x , y_{0}, y_{1}\right) &= F_{690}\! \left(x , y_{0}, y_{1}\right)+F_{693}\! \left(x , y_{0}, y_{1}\right)\\ F_{691}\! \left(x , y_{0}, y_{1}\right) &= F_{692}\! \left(x , y_{0}, y_{1}\right)\\ F_{692}\! \left(x , y_{0}, y_{1}\right) &= F_{312}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{693}\! \left(x , y_{0}, y_{1}\right) &= F_{694}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{694}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{695}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{699}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{695}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{4}\! \left(x \right) F_{696}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{696}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{493}\! \left(x , y_{0}, y_{1}\right)+F_{697}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{697}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{698}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{698}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{483}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{699}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{700}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{700}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{258}\! \left(x , y_{0}\right) F_{701}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{701}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{702}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{702}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{702}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{703}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{703}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{699}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{704}\! \left(x , y_{1}, y_{2}\right)\\ F_{690}\! \left(x , y_{0}, y_{1}\right) &= F_{704}\! \left(x , y_{0}, y_{1}\right)+F_{705}\! \left(x , y_{0}, y_{1}\right)\\ F_{705}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{489}\! \left(x , y_{0}, y_{1}\right)\\ F_{706}\! \left(x , y_{0}\right) &= F_{707}\! \left(x , 1, y_{0}\right)\\ F_{707}\! \left(x , y_{0}, y_{1}\right) &= F_{708}\! \left(x , y_{0}, y_{1}\right)\\ F_{708}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{709}\! \left(x , y_{0}, y_{1}\right)\\ F_{709}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{710}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{710}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{710}\! \left(x , y_{0}, y_{1}\right) &= F_{711}\! \left(x , y_{0}\right)+F_{729}\! \left(x , y_{0}, y_{1}\right)\\ F_{711}\! \left(x , y_{0}\right) &= F_{712}\! \left(x \right)+F_{728}\! \left(x , y_{0}\right)\\ F_{712}\! \left(x \right) &= F_{455}\! \left(x \right)+F_{713}\! \left(x \right)\\ F_{713}\! \left(x \right) &= F_{714}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{714}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{715}\! \left(x \right)\\ F_{715}\! \left(x \right) &= F_{716}\! \left(x \right)\\ F_{716}\! \left(x \right) &= F_{4}\! \left(x \right) F_{717}\! \left(x \right)\\ F_{717}\! \left(x \right) &= F_{718}\! \left(x \right)+F_{721}\! \left(x \right)\\ F_{718}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{719}\! \left(x \right)\\ F_{719}\! \left(x \right) &= F_{720}\! \left(x \right)\\ F_{720}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{721}\! \left(x \right) &= F_{715}\! \left(x \right)+F_{722}\! \left(x \right)\\ F_{722}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{723}\! \left(x \right)+F_{727}\! \left(x \right)\\ F_{723}\! \left(x \right) &= F_{4}\! \left(x \right) F_{724}\! \left(x \right)\\ F_{724}\! \left(x \right) &= F_{725}\! \left(x \right)+F_{726}\! \left(x \right)\\ F_{725}\! \left(x \right) &= F_{719}\! \left(x \right)\\ F_{726}\! \left(x \right) &= F_{722}\! \left(x \right)\\ F_{727}\! \left(x \right) &= F_{4}\! \left(x \right) F_{715}\! \left(x \right)\\ F_{728}\! \left(x , y_{0}\right) &= F_{463}\! \left(x , 1, y_{0}\right)\\ F_{729}\! \left(x , y_{0}, y_{1}\right) &= F_{730}\! \left(x , y_{0}, y_{1}\right)\\ F_{730}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{731}\! \left(x , y_{0}, y_{1}\right)\\ F_{731}\! \left(x , y_{0}, y_{1}\right) &= F_{732}\! \left(x , y_{1}, y_{0}\right)+F_{741}\! \left(x , y_{0}, y_{1}\right)\\ F_{732}\! \left(x , y_{0}, y_{1}\right) &= F_{733}\! \left(x , y_{1}, y_{0}\right)+F_{738}\! \left(x , y_{0}, y_{1}\right)\\ F_{733}\! \left(x , y_{0}, y_{1}\right) &= F_{734}\! \left(x , y_{0}, y_{1}\right)+F_{735}\! \left(x , y_{1}\right)\\ F_{734}\! \left(x , y_{0}, y_{1}\right) &= F_{289}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{735}\! \left(x , y_{0}\right) &= F_{736}\! \left(x , y_{0}\right)\\ F_{736}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{737}\! \left(x , y_{0}\right)\\ F_{737}\! \left(x , y_{0}\right) &= F_{312}\! \left(x , 1, y_{0}\right)\\ F_{738}\! \left(x , y_{0}, y_{1}\right) &= F_{739}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{739}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{740}\! \left(x , y_{0}, y_{1}, y_{1}\right)\\ F_{740}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{690}\! \left(x , y_{1}, y_{2}\right)+F_{694}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{741}\! \left(x , y_{0}, y_{1}\right) &= F_{742}\! \left(x , y_{0}, y_{1}\right)\\ F_{742}\! \left(x , y_{0}, y_{1}\right) &= F_{743}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{743}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{740}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{745}\! \left(x , y_{0}\right) &= F_{744}\! \left(x , y_{0}\right)+F_{753}\! \left(x , y_{0}\right)\\ F_{745}\! \left(x , y_{0}\right) &= F_{746}\! \left(x , y_{0}\right)+F_{749}\! \left(x , y_{0}\right)\\ F_{746}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{747}\! \left(x , y_{0}\right)\\ F_{747}\! \left(x , y_{0}\right) &= F_{748}\! \left(x , 1, y_{0}\right)\\ F_{748}\! \left(x , y_{0}, y_{1}\right) &= F_{488}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{571}\! \left(x , y_{0}\right) &= F_{749}\! \left(x , y_{0}\right)+F_{750}\! \left(x , y_{0}\right)\\ F_{750}\! \left(x , y_{0}\right) &= F_{751}\! \left(x , 1, y_{0}\right)\\ F_{751}\! \left(x , y_{0}, y_{1}\right) &= F_{682}\! \left(x , y_{1}\right)+F_{752}\! \left(x , y_{0}, y_{1}\right)\\ F_{752}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{747}\! \left(x , y_{1}\right)\\ F_{753}\! \left(x , y_{0}\right) &= F_{746}\! \left(x , y_{0}\right)+F_{754}\! \left(x , y_{0}\right)\\ F_{754}\! \left(x , y_{0}\right) &= F_{755}\! \left(x , 1, y_{0}\right)\\ F_{755}\! \left(x , y_{0}, y_{1}\right) &= F_{703}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{756}\! \left(x , y_{0}\right) &= F_{757}\! \left(x , y_{0}\right)\\ F_{757}\! \left(x , y_{0}\right) &= F_{758}\! \left(x , 1, y_{0}\right)\\ F_{758}\! \left(x , y_{0}, y_{1}\right) &= F_{759}\! \left(x , y_{1}, y_{0}\right)\\ F_{759}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{312}\! \left(x , y_{1}, y_{0}\right)\\ F_{760}\! \left(x , y_{0}\right) &= F_{761}\! \left(x , 1, y_{0}\right)\\ F_{761}\! \left(x , y_{0}, y_{1}\right) &= F_{762}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{762}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{0} F_{763}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{763}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{764}\! \left(x , y_{0}, y_{1}\right)+F_{766}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{764}\! \left(x , y_{0}, y_{1}\right) &= F_{429}\! \left(x , y_{0}, y_{1}\right)+F_{765}\! \left(x , y_{0}, y_{1}\right)\\ F_{765}\! \left(x , y_{0}, y_{1}\right) &= F_{320}\! \left(x , y_{0}, y_{1}\right)+F_{399}\! \left(x , y_{0}, y_{1}\right)\\ F_{766}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{767}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{767}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{2}\right) F_{768}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{768}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{763}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{763}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{770}\! \left(x , y_{0}\right) &= F_{769}\! \left(x , y_{0}\right)+F_{797}\! \left(x , y_{0}\right)\\ F_{770}\! \left(x , y_{0}\right) &= F_{771}\! \left(x , y_{0}\right)+F_{795}\! \left(x , y_{0}\right)\\ F_{771}\! \left(x , y_{0}\right) &= F_{772}\! \left(x , 1, y_{0}\right)\\ F_{772}\! \left(x , y_{0}, y_{1}\right) &= F_{773}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{773}\! \left(x , y_{0}, y_{1}\right) &= F_{518}\! \left(x , y_{1}\right)+F_{774}\! \left(x , y_{0}, y_{1}\right)\\ F_{774}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{775}\! \left(x , y_{1}\right)\\ F_{775}\! \left(x , y_{0}\right) &= F_{776}\! \left(x , y_{0}\right)\\ F_{776}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{777}\! \left(x , y_{0}\right)\\ F_{777}\! \left(x , y_{0}\right) &= F_{778}\! \left(x , y_{0}\right)+F_{779}\! \left(x , y_{0}\right)\\ F_{778}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{518}\! \left(x , y_{0}\right)\\ F_{779}\! \left(x , y_{0}\right) &= F_{780}\! \left(x , y_{0}\right)\\ F_{780}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{781}\! \left(x , y_{0}\right)\\ F_{782}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{781}\! \left(x , y_{0}\right)\\ F_{782}\! \left(x , y_{0}\right) &= F_{783}\! \left(x , y_{0}\right)\\ F_{784}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{783}\! \left(x , y_{1}\right)\\ F_{785}\! \left(x , y_{0}, y_{1}\right) &= F_{784}\! \left(x , y_{0}, y_{1}\right)+F_{794}\! \left(x , y_{0}, y_{1}\right)\\ F_{785}\! \left(x , y_{0}, y_{1}\right) &= F_{786}\! \left(x , y_{0}, y_{1}\right)\\ F_{786}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{787}\! \left(x , y_{0}, y_{1}\right)\\ F_{787}\! \left(x , y_{0}, y_{1}\right) &= F_{788}\! \left(x , y_{0}, y_{1}\right)+F_{791}\! \left(x , y_{0}, y_{1}\right)\\ F_{788}\! \left(x , y_{0}, y_{1}\right) &= F_{789}\! \left(x , y_{1}\right)+F_{791}\! \left(x , y_{0}, y_{1}\right)\\ F_{790}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{789}\! \left(x , y_{0}\right)\\ F_{790}\! \left(x , y_{0}\right) &= F_{539}\! \left(x , y_{0}\right)\\ F_{791}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{792}\! \left(x , y_{1}\right)\\ F_{793}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{792}\! \left(x , y_{0}\right)\\ F_{793}\! \left(x , y_{0}\right) &= F_{520}\! \left(x , y_{0}\right)\\ F_{794}\! \left(x , y_{0}, y_{1}\right) &= F_{198}\! \left(x , y_{0}\right) F_{792}\! \left(x , y_{1}\right)\\ F_{796}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{795}\! \left(x , y_{0}\right)\\ F_{796}\! \left(x , y_{0}\right) &= F_{675}\! \left(x , y_{0}\right)\\ F_{798}\! \left(x , y_{0}\right) &= F_{797}\! \left(x , y_{0}\right)+F_{970}\! \left(x , y_{0}\right)\\ F_{799}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{798}\! \left(x , y_{0}\right)\\ F_{799}\! \left(x , y_{0}\right) &= F_{800}\! \left(x , y_{0}\right)\\ F_{800}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{801}\! \left(x , y_{0}\right)\\ F_{801}\! \left(x , y_{0}\right) &= F_{802}\! \left(x , y_{0}\right)+F_{807}\! \left(x , y_{0}\right)\\ F_{802}\! \left(x , y_{0}\right) &= F_{735}\! \left(x , y_{0}\right)+F_{803}\! \left(x , y_{0}\right)\\ F_{803}\! \left(x , y_{0}\right) &= F_{804}\! \left(x , 1, y_{0}\right)\\ F_{804}\! \left(x , y_{0}, y_{1}\right) &= F_{575}\! \left(x , y_{0}, y_{1}\right)+F_{805}\! \left(x , y_{0}, y_{1}\right)\\ F_{805}\! \left(x , y_{0}, y_{1}\right) &= F_{554}\! \left(x , y_{0}, y_{1}\right)+F_{806}\! \left(x , y_{1}\right)\\ F_{806}\! \left(x , y_{0}\right) &= F_{109}\! \left(x , y_{0}\right)+F_{550}\! \left(x , y_{0}\right)\\ F_{807}\! \left(x , y_{0}\right) &= F_{808}\! \left(x , 1, y_{0}\right)\\ F_{808}\! \left(x , y_{0}, y_{1}\right) &= F_{809}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{809}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{810}\! \left(x , y_{1}\right)\\ F_{810}\! \left(x , y_{0}\right) &= F_{811}\! \left(x , y_{0}\right)\\ F_{811}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{812}\! \left(x , y_{0}\right)\\ F_{812}\! \left(x , y_{0}\right) &= F_{813}\! \left(x , 1, y_{0}\right)\\ F_{813}\! \left(x , y_{0}, y_{1}\right) &= F_{814}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{814}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{815}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{815}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{816}\! \left(x , y_{0}, y_{1}\right)+F_{967}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{816}\! \left(x , y_{0}, y_{1}\right) &= F_{817}\! \left(x , y_{0}, y_{1}\right)+F_{952}\! \left(x , y_{0}, y_{1}\right)\\ F_{817}\! \left(x , y_{0}, y_{1}\right) &= F_{818}\! \left(x , y_{1}\right)+F_{819}\! \left(x , y_{0}, y_{1}\right)\\ F_{818}\! \left(x , y_{0}\right) &= F_{323}\! \left(x , y_{0}\right)+F_{577}\! \left(x , y_{0}\right)\\ F_{819}\! \left(x , y_{0}, y_{1}\right) &= F_{820}\! \left(x , y_{0}, y_{1}\right)+F_{879}\! \left(x , y_{0}, y_{1}\right)\\ F_{820}\! \left(x , y_{0}, y_{1}\right) &= F_{821}\! \left(x , y_{0}\right)+F_{824}\! \left(x , y_{0}, y_{1}\right)\\ F_{821}\! \left(x , y_{0}\right) &= F_{822}\! \left(x , y_{0}\right)\\ F_{822}\! \left(x , y_{0}\right) &= F_{258}\! \left(x , y_{0}\right) F_{823}\! \left(x , y_{0}\right)\\ F_{823}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{821}\! \left(x , y_{0}\right)\\ F_{824}\! \left(x , y_{0}, y_{1}\right) &= F_{825}\! \left(x , y_{0}, y_{1}\right)\\ F_{825}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{826}\! \left(x , y_{0}, y_{1}\right)\\ F_{826}\! \left(x , y_{0}, y_{1}\right) &= F_{827}\! \left(x , y_{0}, y_{1}\right)+F_{836}\! \left(x , y_{0}, y_{1}\right)\\ F_{827}\! \left(x , y_{0}, y_{1}\right) &= F_{821}\! \left(x , y_{0}\right)+F_{828}\! \left(x , y_{0}, y_{1}\right)\\ F_{828}\! \left(x , y_{0}, y_{1}\right) &= F_{829}\! \left(x , y_{0}, y_{1}\right)\\ F_{829}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{830}\! \left(x , y_{0}, y_{1}\right)\\ F_{830}\! \left(x , y_{0}, y_{1}\right) &= F_{831}\! \left(x , y_{0}, y_{1}\right)+F_{835}\! \left(x , y_{0}, y_{1}\right)\\ F_{831}\! \left(x , y_{0}, y_{1}\right) &= F_{821}\! \left(x , y_{0}\right)+F_{832}\! \left(x , y_{0}, y_{1}\right)\\ F_{832}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{833}\! \left(x , y_{0}\right)\\ F_{833}\! \left(x , y_{0}\right) &= F_{834}\! \left(x , y_{0}\right)\\ F_{834}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{821}\! \left(x , y_{0}\right)\\ F_{835}\! \left(x , y_{0}, y_{1}\right) &= F_{832}\! \left(x , y_{0}, y_{1}\right)\\ F_{836}\! \left(x , y_{0}, y_{1}\right) &= F_{824}\! \left(x , y_{0}, y_{1}\right)+F_{837}\! \left(x , y_{0}, y_{1}\right)\\ F_{837}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{838}\! \left(x , y_{0}, y_{1}\right)+F_{876}\! \left(x , y_{0}, y_{1}\right)\\ F_{838}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{839}\! \left(x , y_{0}, y_{1}\right)\\ F_{839}\! \left(x , y_{0}, y_{1}\right) &= F_{840}\! \left(x , y_{0}, y_{1}\right)+F_{846}\! \left(x , y_{0}, y_{1}\right)\\ F_{840}\! \left(x , y_{0}, y_{1}\right) &= F_{828}\! \left(x , y_{0}, y_{1}\right)+F_{841}\! \left(x , y_{0}, y_{1}\right)\\ F_{841}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{842}\! \left(x , y_{0}, y_{1}\right)+F_{844}\! \left(x , y_{0}, y_{1}\right)\\ F_{842}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{843}\! \left(x , y_{0}, y_{1}\right)\\ F_{843}\! \left(x , y_{0}, y_{1}\right) &= F_{832}\! \left(x , y_{0}, y_{1}\right)\\ F_{844}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{845}\! \left(x , y_{0}, y_{1}\right)\\ F_{845}\! \left(x , y_{0}, y_{1}\right) &= F_{835}\! \left(x , y_{0}, y_{1}\right)\\ F_{846}\! \left(x , y_{0}, y_{1}\right) &= F_{837}\! \left(x , y_{0}, y_{1}\right)+F_{847}\! \left(x , y_{0}, y_{1}\right)\\ F_{847}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{848}\! \left(x , y_{0}, y_{1}\right)+F_{852}\! \left(x , y_{0}, y_{1}\right)+F_{873}\! \left(x , y_{0}, y_{1}\right)\\ F_{848}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{849}\! \left(x , y_{0}, y_{1}\right)\\ F_{849}\! \left(x , y_{0}, y_{1}\right) &= F_{850}\! \left(x , y_{0}, y_{1}\right)+F_{851}\! \left(x , y_{0}, y_{1}\right)\\ F_{850}\! \left(x , y_{0}, y_{1}\right) &= F_{841}\! \left(x , y_{0}, y_{1}\right)\\ F_{851}\! \left(x , y_{0}, y_{1}\right) &= F_{847}\! \left(x , y_{0}, y_{1}\right)\\ F_{852}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{853}\! \left(x , y_{0}, y_{1}\right)\\ F_{853}\! \left(x , y_{0}, y_{1}\right) &= F_{854}\! \left(x , y_{0}, y_{1}\right)\\ F_{854}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{855}\! \left(x , y_{0}, y_{1}\right)\\ F_{855}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{856}\! \left(x , y_{0}, y_{1}\right)+F_{872}\! \left(x , y_{0}, y_{1}\right)\\ F_{856}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{857}\! \left(x , y_{0}, y_{1}\right)\\ F_{857}\! \left(x , y_{0}, y_{1}\right) &= F_{858}\! \left(x , y_{0}, y_{1}\right)+F_{863}\! \left(x , y_{0}, y_{1}\right)\\ F_{858}\! \left(x , y_{0}, y_{1}\right) &= F_{833}\! \left(x , y_{0}\right)+F_{859}\! \left(x , y_{0}, y_{1}\right)\\ F_{859}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{860}\! \left(x , y_{0}, y_{1}\right)+F_{862}\! \left(x , y_{0}, y_{1}\right)\\ F_{860}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{861}\! \left(x , y_{0}, y_{1}\right)\\ F_{861}\! \left(x , y_{0}, y_{1}\right) &= F_{833}\! \left(x , y_{0}\right)\\ F_{862}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{832}\! \left(x , y_{0}, y_{1}\right)\\ F_{863}\! \left(x , y_{0}, y_{1}\right) &= F_{855}\! \left(x , y_{0}, y_{1}\right)+F_{864}\! \left(x , y_{0}, y_{1}\right)\\ F_{864}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{865}\! \left(x , y_{0}, y_{1}\right)+F_{869}\! \left(x , y_{0}, y_{1}\right)+F_{871}\! \left(x , y_{0}, y_{1}\right)\\ F_{865}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{866}\! \left(x , y_{0}, y_{1}\right)\\ F_{866}\! \left(x , y_{0}, y_{1}\right) &= F_{867}\! \left(x , y_{0}, y_{1}\right)+F_{868}\! \left(x , y_{0}, y_{1}\right)\\ F_{867}\! \left(x , y_{0}, y_{1}\right) &= F_{859}\! \left(x , y_{0}, y_{1}\right)\\ F_{868}\! \left(x , y_{0}, y_{1}\right) &= F_{864}\! \left(x , y_{0}, y_{1}\right)\\ F_{869}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{870}\! \left(x , y_{0}, y_{1}\right)\\ F_{870}\! \left(x , y_{0}, y_{1}\right) &= F_{855}\! \left(x , y_{0}, y_{1}\right)\\ F_{871}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{854}\! \left(x , y_{0}, y_{1}\right)\\ F_{872}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{824}\! \left(x , y_{0}, y_{1}\right)\\ F_{873}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{874}\! \left(x , y_{0}, y_{1}\right)\\ F_{874}\! \left(x , y_{0}, y_{1}\right) &= F_{875}\! \left(x , y_{0}, y_{1}\right)\\ F_{875}\! \left(x , y_{0}, y_{1}\right) &= F_{854}\! \left(x , y_{0}, y_{1}\right)\\ F_{876}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{877}\! \left(x , y_{0}, y_{1}\right)\\ F_{877}\! \left(x , y_{0}, y_{1}\right) &= F_{875}\! \left(x , y_{0}, y_{1}\right)+F_{878}\! \left(x , y_{0}, y_{1}\right)\\ F_{878}\! \left(x , y_{0}, y_{1}\right) &= F_{824}\! \left(x , y_{0}, y_{1}\right)+F_{854}\! \left(x , y_{0}, y_{1}\right)\\ F_{879}\! \left(x , y_{0}, y_{1}\right) &= F_{880}\! \left(x , y_{0}\right)+F_{891}\! \left(x , y_{0}, y_{1}\right)\\ F_{880}\! \left(x , y_{0}\right) &= F_{881}\! \left(x , y_{0}\right)\\ F_{881}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{882}\! \left(x , y_{0}\right)\\ F_{882}\! \left(x , y_{0}\right) &= F_{883}\! \left(x , y_{0}\right)+F_{884}\! \left(x , y_{0}\right)\\ F_{883}\! \left(x , y_{0}\right) &= F_{821}\! \left(x , y_{0}\right)+F_{833}\! \left(x , y_{0}\right)\\ F_{884}\! \left(x , y_{0}\right) &= F_{880}\! \left(x , y_{0}\right)+F_{885}\! \left(x , y_{0}\right)\\ F_{885}\! \left(x , y_{0}\right) &= 2 F_{20}\! \left(x \right)+F_{886}\! \left(x , y_{0}\right)+F_{890}\! \left(x , y_{0}\right)\\ F_{886}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{887}\! \left(x , y_{0}\right)\\ F_{887}\! \left(x , y_{0}\right) &= F_{888}\! \left(x , y_{0}\right)+F_{889}\! \left(x , y_{0}\right)\\ F_{888}\! \left(x , y_{0}\right) &= F_{833}\! \left(x , y_{0}\right)\\ F_{889}\! \left(x , y_{0}\right) &= F_{885}\! \left(x , y_{0}\right)\\ F_{890}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{880}\! \left(x , y_{0}\right)\\ F_{891}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{892}\! \left(x , y_{0}, y_{1}\right)+F_{897}\! \left(x , y_{0}, y_{1}\right)\\ F_{892}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{893}\! \left(x , y_{0}, y_{1}\right)\\ F_{893}\! \left(x , y_{0}, y_{1}\right) &= F_{894}\! \left(x , y_{0}, y_{1}\right)+F_{895}\! \left(x , y_{0}, y_{1}\right)\\ F_{894}\! \left(x , y_{0}, y_{1}\right) &= F_{832}\! \left(x , y_{0}, y_{1}\right)\\ F_{895}\! \left(x , y_{0}, y_{1}\right) &= F_{896}\! \left(x , y_{0}, y_{1}\right)\\ F_{896}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{885}\! \left(x , y_{0}\right)\\ F_{897}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{898}\! \left(x , y_{0}, y_{1}\right)\\ F_{898}\! \left(x , y_{0}, y_{1}\right) &= F_{899}\! \left(x , y_{0}, y_{1}\right)+F_{905}\! \left(x , y_{0}, y_{1}\right)\\ F_{899}\! \left(x , y_{0}, y_{1}\right) &= F_{880}\! \left(x , y_{0}\right)+F_{900}\! \left(x , y_{0}, y_{1}\right)\\ F_{900}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{892}\! \left(x , y_{0}, y_{1}\right)+F_{901}\! \left(x , y_{0}, y_{1}\right)\\ F_{901}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{902}\! \left(x , y_{0}, y_{1}\right)\\ F_{902}\! \left(x , y_{0}, y_{1}\right) &= F_{903}\! \left(x , y_{0}, y_{1}\right)+F_{904}\! \left(x , y_{0}, y_{1}\right)\\ F_{903}\! \left(x , y_{0}, y_{1}\right) &= F_{880}\! \left(x , y_{0}\right)+F_{896}\! \left(x , y_{0}, y_{1}\right)\\ F_{904}\! \left(x , y_{0}, y_{1}\right) &= F_{896}\! \left(x , y_{0}, y_{1}\right)\\ F_{905}\! \left(x , y_{0}, y_{1}\right) &= F_{891}\! \left(x , y_{0}, y_{1}\right)+F_{906}\! \left(x , y_{0}, y_{1}\right)\\ F_{906}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{907}\! \left(x , y_{0}, y_{1}\right)+F_{908}\! \left(x , y_{0}, y_{1}\right)+F_{949}\! \left(x , y_{0}, y_{1}\right)\\ F_{907}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{908}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{909}\! \left(x , y_{0}, y_{1}\right)\\ F_{909}\! \left(x , y_{0}, y_{1}\right) &= F_{910}\! \left(x , y_{0}, y_{1}\right)+F_{916}\! \left(x , y_{0}, y_{1}\right)\\ F_{910}\! \left(x , y_{0}, y_{1}\right) &= F_{900}\! \left(x , y_{0}, y_{1}\right)+F_{911}\! \left(x , y_{0}, y_{1}\right)\\ F_{911}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{907}\! \left(x , y_{0}, y_{1}\right)+F_{912}\! \left(x , y_{0}, y_{1}\right)+F_{914}\! \left(x , y_{0}, y_{1}\right)\\ F_{912}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{913}\! \left(x , y_{0}, y_{1}\right)\\ F_{913}\! \left(x , y_{0}, y_{1}\right) &= F_{896}\! \left(x , y_{0}, y_{1}\right)\\ F_{914}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{915}\! \left(x , y_{0}, y_{1}\right)\\ F_{915}\! \left(x , y_{0}, y_{1}\right) &= F_{904}\! \left(x , y_{0}, y_{1}\right)\\ F_{916}\! \left(x , y_{0}, y_{1}\right) &= F_{906}\! \left(x , y_{0}, y_{1}\right)+F_{917}\! \left(x , y_{0}, y_{1}\right)\\ F_{917}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{918}\! \left(x , y_{0}, y_{1}\right)+F_{919}\! \left(x , y_{0}, y_{1}\right)+F_{923}\! \left(x , y_{0}, y_{1}\right)+F_{946}\! \left(x , y_{0}, y_{1}\right)\\ F_{918}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{919}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{920}\! \left(x , y_{0}, y_{1}\right)\\ F_{920}\! \left(x , y_{0}, y_{1}\right) &= F_{921}\! \left(x , y_{0}, y_{1}\right)+F_{922}\! \left(x , y_{0}, y_{1}\right)\\ F_{921}\! \left(x , y_{0}, y_{1}\right) &= F_{911}\! \left(x , y_{0}, y_{1}\right)\\ F_{922}\! \left(x , y_{0}, y_{1}\right) &= F_{917}\! \left(x , y_{0}, y_{1}\right)\\ F_{923}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{924}\! \left(x , y_{0}, y_{1}\right)\\ F_{924}\! \left(x , y_{0}, y_{1}\right) &= F_{925}\! \left(x , y_{0}, y_{1}\right)\\ F_{925}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{926}\! \left(x , y_{0}, y_{1}\right)\\ F_{926}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{927}\! \left(x , y_{0}, y_{1}\right)+F_{928}\! \left(x , y_{0}, y_{1}\right)+F_{945}\! \left(x , y_{0}, y_{1}\right)\\ F_{927}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{928}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{929}\! \left(x , y_{0}, y_{1}\right)\\ F_{929}\! \left(x , y_{0}, y_{1}\right) &= F_{930}\! \left(x , y_{0}, y_{1}\right)+F_{935}\! \left(x , y_{0}, y_{1}\right)\\ F_{930}\! \left(x , y_{0}, y_{1}\right) &= F_{885}\! \left(x , y_{0}\right)+F_{931}\! \left(x , y_{0}, y_{1}\right)\\ F_{931}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{927}\! \left(x , y_{0}, y_{1}\right)+F_{932}\! \left(x , y_{0}, y_{1}\right)+F_{934}\! \left(x , y_{0}, y_{1}\right)\\ F_{932}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{933}\! \left(x , y_{0}, y_{1}\right)\\ F_{933}\! \left(x , y_{0}, y_{1}\right) &= F_{885}\! \left(x , y_{0}\right)\\ F_{934}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{896}\! \left(x , y_{0}, y_{1}\right)\\ F_{935}\! \left(x , y_{0}, y_{1}\right) &= F_{926}\! \left(x , y_{0}, y_{1}\right)+F_{936}\! \left(x , y_{0}, y_{1}\right)\\ F_{936}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{20}\! \left(x \right)+F_{937}\! \left(x , y_{0}, y_{1}\right)+F_{938}\! \left(x , y_{0}, y_{1}\right)+F_{942}\! \left(x , y_{0}, y_{1}\right)+F_{944}\! \left(x , y_{0}, y_{1}\right)\\ F_{937}\! \left(x , y_{0}, y_{1}\right) &= 0\\ F_{938}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{939}\! \left(x , y_{0}, y_{1}\right)\\ F_{939}\! \left(x , y_{0}, y_{1}\right) &= F_{940}\! \left(x , y_{0}, y_{1}\right)+F_{941}\! \left(x , y_{0}, y_{1}\right)\\ F_{940}\! \left(x , y_{0}, y_{1}\right) &= F_{931}\! \left(x , y_{0}, y_{1}\right)\\ F_{941}\! \left(x , y_{0}, y_{1}\right) &= F_{936}\! \left(x , y_{0}, y_{1}\right)\\ F_{942}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{943}\! \left(x , y_{0}, y_{1}\right)\\ F_{943}\! \left(x , y_{0}, y_{1}\right) &= F_{926}\! \left(x , y_{0}, y_{1}\right)\\ F_{944}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{925}\! \left(x , y_{0}, y_{1}\right)\\ F_{945}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{891}\! \left(x , y_{0}, y_{1}\right)\\ F_{946}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{947}\! \left(x , y_{0}, y_{1}\right)\\ F_{947}\! \left(x , y_{0}, y_{1}\right) &= F_{948}\! \left(x , y_{0}, y_{1}\right)\\ F_{948}\! \left(x , y_{0}, y_{1}\right) &= F_{925}\! \left(x , y_{0}, y_{1}\right)\\ F_{949}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{950}\! \left(x , y_{0}, y_{1}\right)\\ F_{950}\! \left(x , y_{0}, y_{1}\right) &= F_{948}\! \left(x , y_{0}, y_{1}\right)+F_{951}\! \left(x , y_{0}, y_{1}\right)\\ F_{951}\! \left(x , y_{0}, y_{1}\right) &= F_{891}\! \left(x , y_{0}, y_{1}\right)+F_{925}\! \left(x , y_{0}, y_{1}\right)\\ F_{952}\! \left(x , y_{0}, y_{1}\right) &= F_{953}\! \left(x , y_{0}, y_{1}\right)\\ F_{953}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{954}\! \left(x , y_{0}, y_{1}\right)\\ F_{954}\! \left(x , y_{0}, y_{1}\right) &= F_{955}\! \left(x , y_{0}, y_{1}\right)\\ F_{955}\! \left(x , y_{0}, y_{1}\right) &= F_{956}\! \left(x , y_{0}, y_{1}\right)+F_{963}\! \left(x , y_{1}\right)\\ F_{956}\! \left(x , y_{0}, y_{1}\right) &= F_{957}\! \left(x , y_{0}, y_{1}\right)+F_{958}\! \left(x , y_{1}\right)\\ F_{957}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{253}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{253}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{958}\! \left(x , y_{0}\right) &= F_{959}\! \left(x , y_{0}\right)\\ F_{959}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{960}\! \left(x , y_{0}\right)\\ F_{960}\! \left(x , y_{0}\right) &= F_{961}\! \left(x , y_{0}\right)+F_{962}\! \left(x , y_{0}\right)\\ F_{961}\! \left(x , y_{0}\right) &= F_{956}\! \left(x , 1, y_{0}\right)\\ F_{962}\! \left(x , y_{0}\right) &= F_{958}\! \left(x , y_{0}\right)\\ F_{963}\! \left(x , y_{0}\right) &= F_{964}\! \left(x , 1, y_{0}\right)\\ F_{964}\! \left(x , y_{0}, y_{1}\right) &= F_{965}\! \left(x , y_{0}, y_{1}\right)\\ F_{965}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{113}\! \left(x , y_{0}\right) F_{417}\! \left(x , y_{0}, y_{1}\right) F_{966}\! \left(x , y_{0}\right)\\ F_{966}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{325}\! \left(x , y_{0}\right)\\ F_{967}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{968}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{968}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{2}\right) F_{969}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{969}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{815}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{815}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{971}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{970}\! \left(x , y_{0}\right)\\ F_{971}\! \left(x , y_{0}\right) &= F_{972}\! \left(x , y_{0}\right)\\ F_{972}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{812}\! \left(x , y_{0}\right)\\ F_{973}\! \left(x , y_{0}\right) &= F_{974}\! \left(x , 1, y_{0}\right)\\ F_{975}\! \left(x , y_{0}, y_{1}\right) &= F_{1257}\! \left(x , y_{0}, y_{1}\right)+F_{974}\! \left(x , y_{0}, y_{1}\right)\\ F_{976}\! \left(x , y_{0}, y_{1}\right) &= F_{975}\! \left(x , y_{0}, y_{1}\right)+F_{983}\! \left(x , y_{0}, y_{1}\right)\\ F_{977}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{976}\! \left(x , y_{0}, y_{1}\right)\\ F_{977}\! \left(x , y_{0}, y_{1}\right) &= F_{978}\! \left(x , y_{0}, y_{1}\right)\\ F_{978}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{979}\! \left(x , y_{0}, y_{1}\right)\\ F_{979}\! \left(x , y_{0}, y_{1}\right) &= F_{569}\! \left(x , y_{0}, y_{1}\right)+F_{980}\! \left(x , y_{0}, y_{1}\right)\\ F_{980}\! \left(x , y_{0}, y_{1}\right) &= F_{981}\! \left(x , y_{0}, y_{1}\right)\\ F_{981}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{982}\! \left(x , y_{0}, y_{1}\right)\\ F_{982}\! \left(x , y_{0}, y_{1}\right) &= F_{743}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{983}\! \left(x , y_{0}, y_{1}\right) &= F_{984}\! \left(x , y_{0}, y_{1}\right)\\ F_{984}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{985}\! \left(x , y_{0}, y_{1}\right)\\ F_{985}\! \left(x , y_{0}, y_{1}\right) &= F_{1000}\! \left(x , y_{0}, y_{1}\right)+F_{986}\! \left(x , y_{1}\right)\\ F_{987}\! \left(x , y_{0}\right) &= F_{986}\! \left(x , y_{0}\right)+F_{999}\! \left(x , y_{0}\right)\\ F_{987}\! \left(x , y_{0}\right) &= F_{988}\! \left(x , 1, y_{0}\right)\\ F_{988}\! \left(x , y_{0}, y_{1}\right) &= F_{989}\! \left(x , y_{0}, y_{1}\right)\\ F_{990}\! \left(x , y_{0}, y_{1}\right) &= F_{989}\! \left(x , y_{0}, y_{1}\right)+F_{997}\! \left(x , y_{1}\right)\\ F_{991}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{990}\! \left(x , y_{0}, y_{1}\right)\\ F_{991}\! \left(x , y_{0}, y_{1}\right) &= F_{992}\! \left(x , y_{0}, y_{1}\right)\\ F_{992}\! \left(x , y_{0}, y_{1}\right) &= F_{993}\! \left(x , y_{1}\right)+F_{996}\! \left(x , y_{0}, y_{1}\right)\\ F_{795}\! \left(x , y_{0}\right) &= F_{993}\! \left(x , y_{0}\right)+F_{994}\! \left(x , y_{0}\right)\\ F_{994}\! \left(x , y_{0}\right) &= y_{0} F_{995}\! \left(x , y_{0}\right)\\ F_{667}\! \left(x , y_{0}\right) &= F_{775}\! \left(x , y_{0}\right)+F_{995}\! \left(x , y_{0}\right)\\ F_{996}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{995}\! \left(x , y_{1}\right)\\ F_{998}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{997}\! \left(x , y_{0}\right)\\ F_{998}\! \left(x , y_{0}\right) &= F_{993}\! \left(x , y_{0}\right)\\ F_{999}\! \left(x , y_{0}\right) &= F_{1000}\! \left(x , 1, y_{0}\right)\\ F_{1000}\! \left(x , y_{0}, y_{1}\right) &= F_{1001}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{1001}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1002}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1002}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1003}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{107}\! \left(x , y_{0}\right)\\ F_{1003}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{1004}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}+F_{1004}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{1004}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1001}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1005}\! \left(x , y_{1}, y_{2}\right)\\ F_{1006}\! \left(x , y_{0}, y_{1}\right) &= F_{1005}\! \left(x , y_{0}, y_{1}\right)+F_{1395}\! \left(x , y_{0}, y_{1}\right)\\ F_{1007}\! \left(x , y_{0}, y_{1}\right) &= F_{1006}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{1007}\! \left(x , y_{0}, y_{1}\right) &= F_{1008}\! \left(x , y_{0}, y_{1}\right)+F_{1015}\! \left(x , y_{0}, y_{1}\right)\\ F_{1008}\! \left(x , y_{0}, y_{1}\right) &= F_{1009}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{1009}\! \left(x , y_{0}, y_{1}\right) &= F_{1010}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1010}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1011}\! \left(x , y_{1}\right) F_{492}\! \left(x , y_{0}, y_{2}\right)\\ F_{1011}\! \left(x , y_{0}\right) &= F_{1012}\! \left(x , y_{0}\right)+F_{4}\! \left(x \right)\\ F_{1012}\! \left(x , y_{0}\right) &= F_{1013}\! \left(x , y_{0}\right)+F_{1014}\! \left(x , y_{0}\right)+F_{20}\! \left(x \right)\\ F_{1013}\! \left(x , y_{0}\right) &= F_{114}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1014}\! \left(x , y_{0}\right) &= F_{1011}\! \left(x , y_{0}\right) F_{107}\! \left(x , y_{0}\right)\\ F_{1015}\! \left(x , y_{0}, y_{1}\right) &= F_{1016}\! \left(x , y_{0}, y_{1}\right)\\ F_{1016}\! \left(x , y_{0}, y_{1}\right) &= F_{1017}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1017}\! \left(x , y_{0}, y_{1}\right) &= F_{1018}\! \left(x , y_{0}, y_{1}\right)+F_{1405}\! \left(x , y_{0}, y_{1}\right)\\ F_{1018}\! \left(x , y_{0}, y_{1}\right) &= F_{1019}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{1019}\! \left(x , y_{0}, y_{1}\right) &= F_{1020}\! \left(x , y_{0}, y_{1}\right) F_{113}\! \left(x , y_{0}\right)\\ F_{1020}\! \left(x , y_{0}, y_{1}\right) &= F_{1021}\! \left(x , y_{0}, y_{1}\right)\\ F_{1021}\! \left(x , y_{0}, y_{1}\right) &= F_{1022}\! \left(x , y_{0}\right)+F_{1404}\! \left(x , y_{0}, y_{1}\right)\\ F_{1023}\! \left(x , y_{0}\right) &= F_{1022}\! \left(x , y_{0}\right)+F_{1389}\! \left(x , y_{0}\right)\\ F_{1023}\! \left(x , y_{0}\right) &= F_{1024}\! \left(x , y_{0}\right)\\ F_{1025}\! \left(x , y_{0}\right) &= F_{1024}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{0}\right)\\ F_{1026}\! \left(x , y_{0}\right) &= F_{1025}\! \left(x , y_{0}\right)+F_{1031}\! \left(x , y_{0}\right)\\ F_{1027}\! \left(x , y_{0}\right) &= F_{1026}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1027}\! \left(x , y_{0}\right) &= F_{1028}\! \left(x , y_{0}\right)\\ F_{1028}\! \left(x , y_{0}\right) &= F_{1029}\! \left(x , 1, y_{0}\right)\\ F_{985}\! \left(x , y_{0}, y_{1}\right) &= F_{1029}\! \left(x , y_{0}, y_{1}\right)+F_{1030}\! \left(x , y_{0}, y_{1}\right)\\ F_{1030}\! \left(x , y_{0}, y_{1}\right) &= F_{1010}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{1031}\! \left(x , y_{0}\right) &= F_{1032}\! \left(x , 1, y_{0}\right)\\ F_{1032}\! \left(x , y_{0}, y_{1}\right) &= F_{1033}\! \left(x , y_{1}\right) F_{180}\! \left(x , y_{0}, y_{1}\right)\\ F_{1034}\! \left(x , y_{0}\right) &= F_{1033}\! \left(x , y_{0}\right) F_{107}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1034}\! \left(x , y_{0}\right) &= F_{1035}\! \left(x , y_{0}\right)\\ F_{1036}\! \left(x , y_{0}\right) &= F_{1035}\! \left(x , y_{0}\right)+F_{1315}\! \left(x , y_{0}\right)\\ F_{1036}\! \left(x , y_{0}\right) &= F_{1037}\! \left(x , y_{0}\right)\\ F_{1038}\! \left(x , y_{0}\right) &= F_{1037}\! \left(x , y_{0}\right)+F_{1055}\! \left(x , y_{0}\right)\\ F_{1039}\! \left(x , y_{0}\right) &= F_{1038}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1039}\! \left(x , y_{0}\right) &= F_{1040}\! \left(x , y_{0}\right)\\ F_{1041}\! \left(x , y_{0}\right) &= F_{1040}\! \left(x , y_{0}\right)+F_{1043}\! \left(x , y_{0}\right)\\ F_{1041}\! \left(x , y_{0}\right) &= F_{1042}\! \left(x , y_{0}\right)\\ F_{1042}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{679}\! \left(x , y_{0}\right)\\ F_{1043}\! \left(x , y_{0}\right) &= F_{1044}\! \left(x , 1, y_{0}\right)\\ F_{1044}\! \left(x , y_{0}, y_{1}\right) &= F_{1045}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1045}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1046}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1046}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1047}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{107}\! \left(x , y_{2}\right)\\ F_{1047}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1048}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1054}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1048}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1049}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1051}\! \left(x , y_{0}, y_{2}\right)\\ F_{1049}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1050}\! \left(x , y_{1}, y_{2}\right) F_{113}\! \left(x , y_{0}\right) F_{184}\! \left(x , y_{1}\right)\\ F_{1050}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{1}\right)+F_{180}\! \left(x , y_{0}, y_{1}\right)\\ F_{1051}\! \left(x , y_{0}, y_{1}\right) &= F_{1052}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{1}\right)\\ F_{1052}\! \left(x , y_{0}\right) &= F_{1053}\! \left(x , y_{0}\right)\\ F_{1053}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{0}\right) F_{114}\! \left(x , y_{0}\right) F_{966}\! \left(x , y_{0}\right)\\ F_{1054}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{113}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{1}\right) F_{114}\! \left(x , y_{1}\right) F_{184}\! \left(x , y_{2}\right)\\ F_{1055}\! \left(x , y_{0}\right) &= F_{1056}\! \left(x , y_{0}\right)\\ F_{1056}\! \left(x , y_{0}\right) &= F_{1057}\! \left(x , y_{0}\right) F_{107}\! \left(x , y_{0}\right)\\ F_{1057}\! \left(x , y_{0}\right) &= F_{1058}\! \left(x , y_{0}\right)+F_{1305}\! \left(x , y_{0}\right)\\ F_{1059}\! \left(x , y_{0}\right) &= F_{1058}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1059}\! \left(x , y_{0}\right) &= F_{1060}\! \left(x , y_{0}\right)\\ F_{1061}\! \left(x , y_{0}\right) &= F_{1060}\! \left(x , y_{0}\right)+F_{1295}\! \left(x , y_{0}\right)\\ F_{1062}\! \left(x , y_{0}\right) &= F_{1061}\! \left(x , y_{0}\right)+F_{1064}\! \left(x , y_{0}\right)\\ F_{1063}\! \left(x , y_{0}\right) &= F_{1062}\! \left(x , y_{0}\right) F_{107}\! \left(x , y_{0}\right)\\ F_{1063}\! \left(x , y_{0}\right) &= F_{1040}\! \left(x , y_{0}\right)\\ F_{1064}\! \left(x , y_{0}\right) &= F_{1065}\! \left(x , 1, y_{0}\right)\\ F_{1065}\! \left(x , y_{0}, y_{1}\right) &= F_{1066}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1066}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1067}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1294}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1067}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1068}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1068}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1069}\! \left(x , y_{0}, y_{1}\right) F_{113}\! \left(x , y_{2}\right)\\ F_{1069}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{1070}\! \left(x , y_{0}, y_{1}\right)\\ F_{1071}\! \left(x , y_{0}, y_{1}\right) &= F_{1070}\! \left(x , y_{0}, y_{1}\right) F_{14}\! \left(x \right)\\ F_{1071}\! \left(x , y_{0}, y_{1}\right) &= F_{1072}\! \left(x , y_{0}, y_{1}\right)\\ F_{1073}\! \left(x , y_{0}, y_{1}\right) &= F_{1072}\! \left(x , y_{0}, y_{1}\right)+F_{1290}\! \left(x , y_{0}, y_{1}\right)\\ F_{1073}\! \left(x , y_{0}, y_{1}\right) &= F_{1074}\! \left(x , y_{0}, y_{1}\right)+F_{1279}\! \left(x , y_{0}, y_{1}\right)\\ F_{1074}\! \left(x , y_{0}, y_{1}\right) &= F_{1075}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1075}\! \left(x , y_{0}, y_{1}\right) &= F_{1076}\! \left(x , y_{1}\right)+F_{1267}\! \left(x , y_{0}, y_{1}\right)\\ F_{1076}\! \left(x , y_{0}\right) &= F_{1077}\! \left(x , y_{0}\right)+F_{500}\! \left(x , y_{0}\right)\\ F_{1078}\! \left(x , y_{0}\right) &= F_{1077}\! \left(x , y_{0}\right)+F_{1173}\! \left(x , y_{0}\right)\\ F_{1078}\! \left(x , y_{0}\right) &= F_{1079}\! \left(x , y_{0}\right)+F_{1083}\! \left(x , y_{0}\right)\\ F_{1079}\! \left(x , y_{0}\right) &= F_{1080}\! \left(x , y_{0}\right)\\ F_{1080}\! \left(x , y_{0}\right) &= F_{1081}\! \left(x , y_{0}\right) F_{15}\! \left(x \right)\\ F_{1081}\! \left(x , y_{0}\right) &= F_{1082}\! \left(x , y_{0}\right)+F_{88}\! \left(x \right)\\ F_{1082}\! \left(x , y_{0}\right) &= F_{15}\! \left(x \right) F_{184}\! \left(x , y_{0}\right)\\ F_{1083}\! \left(x , y_{0}\right) &= F_{1084}\! \left(x , y_{0}\right)\\ F_{1084}\! \left(x , y_{0}\right) &= F_{1085}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1085}\! \left(x , y_{0}\right) &= F_{1086}\! \left(x , y_{0}\right)+F_{1145}\! \left(x , y_{0}\right)\\ F_{1086}\! \left(x , y_{0}\right) &= F_{1087}\! \left(x , y_{0}\right)\\ F_{1087}\! \left(x , y_{0}\right) &= F_{1088}\! \left(x , y_{0}\right) F_{14}\! \left(x \right)\\ F_{1088}\! \left(x , y_{0}\right) &= F_{1089}\! \left(x \right)+F_{1143}\! \left(x , y_{0}\right)\\ F_{1089}\! \left(x \right) &= F_{1090}\! \left(x \right)\\ F_{1090}\! \left(x \right) &= F_{1091}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{1091}\! \left(x \right) &= F_{1092}\! \left(x \right)+F_{1095}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1092}\! \left(x \right) &= F_{1093}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1093}\! \left(x \right) &= F_{1094}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{1094}\! \left(x \right) &= F_{448}\! \left(x \right)\\ F_{1095}\! \left(x \right) &= F_{1096}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1096}\! \left(x \right) &= F_{1097}\! \left(x \right)+F_{1103}\! \left(x \right)\\ F_{1097}\! \left(x \right) &= F_{1098}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{1098}\! \left(x \right) &= F_{1092}\! \left(x \right)+F_{1099}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1099}\! \left(x \right) &= F_{1100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1100}\! \left(x \right) &= F_{1101}\! \left(x \right)+F_{1102}\! \left(x \right)\\ F_{1101}\! \left(x \right) &= F_{448}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{1102}\! \left(x \right) &= F_{448}\! \left(x \right)\\ F_{1103}\! \left(x \right) &= F_{1091}\! \left(x \right)+F_{1104}\! \left(x \right)\\ F_{1104}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{1106}\! \left(x \right)+F_{1140}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1105}\! \left(x \right) &= 0\\ F_{1106}\! \left(x \right) &= F_{1107}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1107}\! \left(x \right) &= F_{1108}\! \left(x \right)+F_{1114}\! \left(x \right)\\ F_{1108}\! \left(x \right) &= F_{1098}\! \left(x \right)+F_{1109}\! \left(x \right)\\ F_{1109}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{1110}\! \left(x \right)+F_{1112}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1110}\! \left(x \right) &= F_{1111}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1111}\! \left(x \right) &= F_{1094}\! \left(x \right)\\ F_{1112}\! \left(x \right) &= F_{1113}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1113}\! \left(x \right) &= F_{1102}\! \left(x \right)\\ F_{1114}\! \left(x \right) &= F_{1104}\! \left(x \right)+F_{1115}\! \left(x \right)\\ F_{1115}\! \left(x \right) &= F_{1116}\! \left(x \right)+F_{1117}\! \left(x \right)+F_{1121}\! \left(x \right)+F_{1137}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1116}\! \left(x \right) &= 0\\ F_{1117}\! \left(x \right) &= F_{1118}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1118}\! \left(x \right) &= F_{1119}\! \left(x \right)+F_{1120}\! \left(x \right)\\ F_{1119}\! \left(x \right) &= F_{1109}\! \left(x \right)\\ F_{1120}\! \left(x \right) &= F_{1115}\! \left(x \right)\\ F_{1121}\! \left(x \right) &= F_{1122}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1122}\! \left(x \right) &= F_{1123}\! \left(x \right)\\ F_{1123}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{1124}\! \left(x \right)+F_{1136}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1124}\! \left(x \right) &= F_{1125}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1125}\! \left(x \right) &= F_{1126}\! \left(x \right)+F_{1129}\! \left(x \right)\\ F_{1126}\! \left(x \right) &= F_{1127}\! \left(x \right)+F_{448}\! \left(x \right)\\ F_{1127}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{1110}\! \left(x \right)+F_{1128}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1128}\! \left(x \right) &= F_{4}\! \left(x \right) F_{448}\! \left(x \right)\\ F_{1129}\! \left(x \right) &= F_{1123}\! \left(x \right)+F_{1130}\! \left(x \right)\\ F_{1130}\! \left(x \right) &= F_{1116}\! \left(x \right)+F_{1121}\! \left(x \right)+F_{1131}\! \left(x \right)+F_{1135}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1131}\! \left(x \right) &= F_{1132}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1132}\! \left(x \right) &= F_{1133}\! \left(x \right)+F_{1134}\! \left(x \right)\\ F_{1133}\! \left(x \right) &= F_{1127}\! \left(x \right)\\ F_{1134}\! \left(x \right) &= F_{1130}\! \left(x \right)\\ F_{1135}\! \left(x \right) &= F_{1123}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1136}\! \left(x \right) &= F_{1091}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1137}\! \left(x \right) &= F_{1138}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1138}\! \left(x \right) &= F_{1139}\! \left(x \right)\\ F_{1139}\! \left(x \right) &= F_{1123}\! \left(x \right)\\ F_{1140}\! \left(x \right) &= F_{1141}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1141}\! \left(x \right) &= F_{1139}\! \left(x \right)+F_{1142}\! \left(x \right)\\ F_{1142}\! \left(x \right) &= F_{1091}\! \left(x \right)+F_{1123}\! \left(x \right)\\ F_{1143}\! \left(x , y_{0}\right) &= F_{1144}\! \left(x , y_{0}\right)\\ F_{1144}\! \left(x , y_{0}\right) &= F_{103}\! \left(x , y_{0}\right) F_{14}\! \left(x \right)\\ F_{1145}\! \left(x , y_{0}\right) &= F_{1146}\! \left(x , y_{0}, 1\right)\\ F_{1147}\! \left(x , y_{0}, y_{1}\right) &= F_{1146}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1147}\! \left(x , y_{0}, y_{1}\right) &= F_{1148}\! \left(x , y_{0}, y_{1}\right)\\ F_{690}\! \left(x , y_{0}, y_{1}\right) &= F_{1148}\! \left(x , y_{0}, y_{1}\right)+F_{1149}\! \left(x , y_{0}, y_{1}\right)\\ F_{1149}\! \left(x , y_{0}, y_{1}\right) &= F_{1150}\! \left(x , y_{1}, y_{0}\right)\\ F_{1150}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{1151}\! \left(x , y_{1}\right)\\ F_{1152}\! \left(x , y_{0}\right) &= F_{1151}\! \left(x , y_{0}\right)+F_{1166}\! \left(x , y_{0}\right)\\ F_{1152}\! \left(x , y_{0}\right) &= F_{1153}\! \left(x , 1, y_{0}\right)\\ F_{1153}\! \left(x , y_{0}, y_{1}\right) &= F_{1154}\! \left(x , y_{0}\right)+F_{1160}\! \left(x , y_{0}, y_{1}\right)\\ F_{1154}\! \left(x , y_{0}\right) &= F_{1155}\! \left(x , y_{0}\right)\\ F_{1155}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{1156}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1156}\! \left(x \right) &= F_{1157}\! \left(x \right)\\ F_{1157}\! \left(x \right) &= F_{1158}\! \left(x \right)+F_{1159}\! \left(x \right)\\ F_{1158}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{1159}\! \left(x \right) &= F_{1091}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{1160}\! \left(x , y_{0}, y_{1}\right) &= F_{1161}\! \left(x , y_{0}, y_{1}\right)\\ F_{1161}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}\right) F_{1162}\! \left(x , y_{1}\right)\\ F_{1162}\! \left(x , y_{0}\right) &= F_{1163}\! \left(x , y_{0}\right)\\ F_{1163}\! \left(x , y_{0}\right) &= F_{1164}\! \left(x , y_{0}\right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1164}\! \left(x , y_{0}\right) &= F_{1165}\! \left(x , y_{0}\right)+F_{129}\! \left(x , y_{0}\right)\\ F_{1165}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right) F_{14}\! \left(x \right)\\ F_{1167}\! \left(x , y_{0}\right) &= F_{1166}\! \left(x , y_{0}\right)+F_{1170}\! \left(x , y_{0}\right)\\ F_{1167}\! \left(x , y_{0}\right) &= F_{1168}\! \left(x , y_{0}\right)+F_{1169}\! \left(x , y_{0}\right)\\ F_{1168}\! \left(x , y_{0}\right) &= F_{15}\! \left(x \right) F_{184}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1169}\! \left(x , y_{0}\right) &= F_{1070}\! \left(x , 1, y_{0}\right)\\ F_{1170}\! \left(x , y_{0}\right) &= F_{1171}\! \left(x , y_{0}\right)+F_{65}\! \left(x \right)\\ F_{1162}\! \left(x , y_{0}\right) &= F_{1171}\! \left(x , y_{0}\right)+F_{1172}\! \left(x , y_{0}\right)\\ F_{1172}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1173}\! \left(x , y_{0}\right) &= F_{1174}\! \left(x , y_{0}\right)\\ F_{1174}\! \left(x , y_{0}\right) &= F_{1175}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1175}\! \left(x , y_{0}\right) &= F_{1176}\! \left(x \right)+F_{1177}\! \left(x , y_{0}\right)\\ F_{1176}\! \left(x \right) &= F_{993}\! \left(x , 1\right)\\ F_{1177}\! \left(x , y_{0}\right) &= F_{1178}\! \left(x , 1, y_{0}\right)\\ F_{1178}\! \left(x , y_{0}, y_{1}\right) &= F_{1179}\! \left(x , y_{0}, y_{1}\right)\\ F_{1179}\! \left(x , y_{0}, y_{1}\right) &= F_{1180}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1180}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{1181}\! \left(x , y_{0}, 1\right)-F_{1181}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{1182}\! \left(x , y_{0}, y_{1}\right) &= F_{1181}\! \left(x , y_{0}, y_{1}\right)+F_{1193}\! \left(x , y_{0}\right)\\ F_{1183}\! \left(x , y_{0}, y_{1}\right) &= F_{1182}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1183}\! \left(x , y_{0}, y_{1}\right) &= F_{1184}\! \left(x , y_{0}, y_{1}\right)\\ F_{1184}\! \left(x , y_{0}, y_{1}\right) &= F_{1185}\! \left(x , y_{1}\right)+F_{1190}\! \left(x , y_{0}, y_{1}\right)\\ F_{1185}\! \left(x , y_{0}\right) &= F_{1077}\! \left(x , y_{0}\right)+F_{1186}\! \left(x , y_{0}\right)\\ F_{1186}\! \left(x , y_{0}\right) &= F_{1187}\! \left(x , y_{0}\right)+F_{15}\! \left(x \right)\\ F_{1187}\! \left(x , y_{0}\right) &= F_{1188}\! \left(x , y_{0}\right)\\ F_{1188}\! \left(x , y_{0}\right) &= F_{1189}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1189}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{1187}\! \left(x , y_{0}\right)\\ F_{1190}\! \left(x , y_{0}, y_{1}\right) &= F_{1191}\! \left(x , y_{0}, y_{1}\right)\\ F_{1191}\! \left(x , y_{0}, y_{1}\right) &= F_{1192}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1192}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{1184}\! \left(x , y_{0}, y_{1}\right) y_{1}+F_{1184}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{1194}\! \left(x , y_{0}\right) &= F_{1193}\! \left(x , y_{0}\right)+F_{1197}\! \left(x , y_{0}\right)\\ F_{1194}\! \left(x , y_{0}\right) &= F_{1195}\! \left(x , y_{0}\right)\\ F_{1195}\! \left(x , y_{0}\right) &= F_{1196}\! \left(x , y_{0}, 1\right)\\ F_{1196}\! \left(x , y_{0}, y_{1}\right) &= F_{1182}\! \left(x , y_{0}, y_{1}\right)\\ F_{1197}\! \left(x , y_{0}\right) &= F_{1198}\! \left(x , y_{0}\right)\\ F_{1199}\! \left(x , y_{0}\right) &= F_{1198}\! \left(x , y_{0}\right)+F_{1255}\! \left(x , y_{0}\right)\\ F_{1199}\! \left(x , y_{0}\right) &= F_{1200}\! \left(x , y_{0}\right)+F_{1219}\! \left(x , y_{0}\right)\\ F_{1200}\! \left(x , y_{0}\right) &= F_{1201}\! \left(x , y_{0}\right)\\ F_{1201}\! \left(x , y_{0}\right) &= F_{1202}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1203}\! \left(x , y_{0}\right) &= F_{1202}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1203}\! \left(x , y_{0}\right) &= F_{1204}\! \left(x , y_{0}\right)\\ F_{1204}\! \left(x , y_{0}\right) &= F_{1205}\! \left(x \right)+F_{1208}\! \left(x , y_{0}\right)\\ F_{1205}\! \left(x \right) &= F_{1206}\! \left(x \right)\\ F_{1206}\! \left(x \right) &= F_{1207}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1207}\! \left(x \right) &= F_{777}\! \left(x , 1\right)\\ F_{1208}\! \left(x , y_{0}\right) &= F_{1209}\! \left(x , y_{0}\right)\\ F_{1209}\! \left(x , y_{0}\right) &= F_{1210}\! \left(x , y_{0}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1210}\! \left(x , y_{0}\right) &= F_{1211}\! \left(x , y_{0}\right)\\ F_{1211}\! \left(x , y_{0}\right) &= F_{1212}\! \left(x , y_{0}, 1\right)\\ F_{1213}\! \left(x , y_{0}, y_{1}\right) &= F_{1212}\! \left(x , y_{0}, y_{1}\right)+F_{1216}\! \left(x , y_{0}, y_{1}\right)\\ F_{1214}\! \left(x , y_{0}, y_{1}\right) &= F_{1213}\! \left(x , y_{0}, y_{1}\right)+F_{985}\! \left(x , y_{0}, y_{1}\right)\\ F_{1215}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{1214}\! \left(x , y_{0}, y_{1}\right)\\ F_{1215}\! \left(x , y_{0}, y_{1}\right) &= F_{978}\! \left(x , y_{0}, y_{1}\right)\\ F_{1216}\! \left(x , y_{0}, y_{1}\right) &= F_{1217}\! \left(x , y_{1}\right)+F_{1218}\! \left(x , y_{0}, y_{1}\right)\\ F_{1217}\! \left(x , y_{0}\right) &= F_{518}\! \left(x , y_{0}\right)+F_{664}\! \left(x , y_{0}\right)\\ F_{1218}\! \left(x , y_{0}, y_{1}\right) &= F_{653}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{1220}\! \left(x , y_{0}\right) &= F_{1219}\! \left(x , y_{0}\right)+F_{1256}\! \left(x , y_{0}\right)\\ F_{1221}\! \left(x , y_{0}\right) &= F_{1220}\! \left(x , y_{0}\right)+F_{1254}\! \left(x , y_{0}\right)\\ F_{1222}\! \left(x , y_{0}\right) &= F_{1221}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1222}\! \left(x , y_{0}\right) &= F_{1223}\! \left(x , y_{0}\right)\\ F_{1223}\! \left(x , y_{0}\right) &= F_{1224}\! \left(x \right)+F_{1231}\! \left(x , y_{0}\right)\\ F_{1224}\! \left(x \right) &= F_{1225}\! \left(x \right)+F_{1226}\! \left(x \right)\\ F_{1225}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{1226}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{1227}\! \left(x \right)\\ F_{1227}\! \left(x \right) &= -F_{1228}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{1228}\! \left(x \right) &= F_{1229}\! \left(x , 1\right)\\ F_{1229}\! \left(x , y_{0}\right) &= F_{1230}\! \left(x , y_{0}\right)+F_{1231}\! \left(x , y_{0}\right)\\ F_{1230}\! \left(x , y_{0}\right) &= F_{273}\! \left(x , y_{0}, 1\right)\\ F_{1231}\! \left(x , y_{0}\right) &= F_{1232}\! \left(x , y_{0}, 1\right)\\ F_{1232}\! \left(x , y_{0}, y_{1}\right) &= F_{1233}\! \left(x , y_{0}, y_{1}\right)\\ F_{1233}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1234}\! \left(x , y_{0}, y_{1}\right)\\ F_{1234}\! \left(x , y_{0}, y_{1}\right) &= F_{1235}\! \left(x , y_{0}, y_{1}\right)\\ F_{1235}\! \left(x , y_{0}, y_{1}\right) &= F_{1236}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1236}\! \left(x , y_{0}, y_{1}\right) &= F_{1237}\! \left(x , y_{0}, y_{1}\right)+F_{1252}\! \left(x , y_{0}\right)\\ F_{1237}\! \left(x , y_{0}, y_{1}\right) &= F_{1238}\! \left(x , y_{0}, y_{1}\right)+F_{1250}\! \left(x , y_{0}, y_{1}\right)\\ F_{1238}\! \left(x , y_{0}, y_{1}\right) &= F_{1239}\! \left(x , y_{0}, y_{1}\right)+F_{1246}\! \left(x , y_{0}, y_{1}\right)\\ F_{1239}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{1240}\! \left(x , y_{0}, y_{1}\right) y_{1}+F_{1240}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{1240}\! \left(x , y_{0}, y_{1}\right) &= F_{1241}\! \left(x , y_{1}\right)+F_{1245}\! \left(x , y_{0}, y_{1}\right)\\ F_{1241}\! \left(x , y_{0}\right) &= F_{1242}\! \left(x , 1, y_{0}\right)\\ F_{1242}\! \left(x , y_{0}, y_{1}\right) &= F_{1243}\! \left(x , y_{0}, y_{1}\right)+F_{508}\! \left(x , y_{1}\right)\\ F_{1243}\! \left(x , y_{0}, y_{1}\right) &= F_{1244}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{1244}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{0} F_{690}\! \left(x , y_{2}, y_{2}\right)\\ F_{1245}\! \left(x , y_{0}, y_{1}\right) &= F_{283}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1246}\! \left(x , y_{0}, y_{1}\right) &= F_{1247}\! \left(x , y_{0}, y_{1}\right)\\ F_{1247}\! \left(x , y_{0}, y_{1}\right) &= F_{1248}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{1248}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{1249}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1249}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-y_{1} F_{740}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{740}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{1250}\! \left(x , y_{0}, y_{1}\right) &= F_{1251}\! \left(x , y_{0}\right)\\ F_{1251}\! \left(x , y_{0}\right) &= F_{982}\! \left(x , y_{0}, 1\right)\\ F_{1252}\! \left(x , y_{0}\right) &= F_{1253}\! \left(x , y_{0}, 1\right)\\ F_{1253}\! \left(x , y_{0}, y_{1}\right) &= F_{762}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1254}\! \left(x , y_{0}\right) &= F_{1255}\! \left(x , y_{0}\right)\\ F_{1255}\! \left(x , y_{0}\right) &= F_{985}\! \left(x , y_{0}, 1\right)\\ F_{1256}\! \left(x , y_{0}\right) &= F_{1257}\! \left(x , y_{0}, 1\right)\\ F_{1257}\! \left(x , y_{0}, y_{1}\right) &= F_{1258}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1258}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1259}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{773}\! \left(x , y_{1}, y_{2}\right)\\ F_{1259}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1260}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1260}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1261}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1261}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1262}\! \left(x , y_{0}, y_{2}\right)+F_{1265}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1263}\! \left(x , y_{0}, y_{1}\right) &= F_{1262}\! \left(x , y_{0}, y_{1}\right)+F_{983}\! \left(x , y_{0}, y_{1}\right)\\ F_{1264}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1263}\! \left(x , y_{0}, y_{1}\right)\\ F_{1264}\! \left(x , y_{0}, y_{1}\right) &= F_{562}\! \left(x , y_{0}, y_{1}\right)\\ F_{1265}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1266}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1266}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{985}\! \left(x , y_{0}, y_{2}\right)\\ F_{1267}\! \left(x , y_{0}, y_{1}\right) &= F_{1268}\! \left(x , y_{0}, y_{1}\right)\\ F_{1268}\! \left(x , y_{0}, y_{1}\right) &= F_{1269}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1269}\! \left(x , y_{0}, y_{1}\right) &= F_{1270}\! \left(x , y_{0}, y_{1}\right)+F_{1271}\! \left(x , y_{0}, y_{1}\right)\\ F_{1270}\! \left(x , y_{0}, y_{1}\right) &= F_{1075}\! \left(x , y_{0}, y_{1}\right)\\ F_{1271}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{1272}\! \left(x , y_{0}, y_{1}\right)+F_{1272}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{1272}\! \left(x , y_{0}, y_{1}\right) &= F_{1273}\! \left(x , y_{1}\right)+F_{1276}\! \left(x , y_{0}, y_{1}\right)\\ F_{1273}\! \left(x , y_{0}\right) &= F_{1189}\! \left(x , y_{0}\right)+F_{1274}\! \left(x , y_{0}\right)\\ F_{1076}\! \left(x , y_{0}\right) &= F_{1274}\! \left(x , y_{0}\right)+F_{1275}\! \left(x \right)\\ F_{1275}\! \left(x \right) &= F_{530}\! \left(x , 1\right)\\ F_{1276}\! \left(x , y_{0}, y_{1}\right) &= F_{1277}\! \left(x , y_{0}, y_{1}\right)\\ F_{1277}\! \left(x , y_{0}, y_{1}\right) &= F_{1278}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1278}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(-F_{1272}\! \left(x , y_{0}, y_{1}\right)+F_{1272}\! \left(x , y_{0}, 1\right)\right)}{-1+y_{1}}\\ F_{1280}\! \left(x , y_{0}, y_{1}\right) &= F_{1279}\! \left(x , y_{0}, y_{1}\right)+F_{1281}\! \left(x , y_{0}, y_{1}\right)\\ F_{1280}\! \left(x , y_{0}, y_{1}\right) &= F_{739}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1281}\! \left(x , y_{0}, y_{1}\right) &= F_{1282}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1282}\! \left(x , y_{0}, y_{1}\right) &= F_{1283}\! \left(x , y_{1}\right)+F_{1285}\! \left(x , y_{0}, y_{1}\right)\\ F_{1283}\! \left(x , y_{0}\right) &= F_{1273}\! \left(x , y_{0}\right)+F_{1284}\! \left(x \right)\\ F_{1284}\! \left(x \right) &= F_{543}\! \left(x , 1\right)\\ F_{1285}\! \left(x , y_{0}, y_{1}\right) &= F_{1286}\! \left(x , y_{0}\right)+F_{1289}\! \left(x , y_{0}, y_{1}\right)\\ F_{1286}\! \left(x , y_{0}\right) &= F_{1287}\! \left(x , y_{0}\right)\\ F_{1287}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1288}\! \left(x , y_{0}\right)\\ F_{1288}\! \left(x , y_{0}\right) &= F_{748}\! \left(x , y_{0}, 1\right)\\ F_{1289}\! \left(x , y_{0}, y_{1}\right) &= F_{1276}\! \left(x , y_{0}, y_{1}\right)\\ F_{1290}\! \left(x , y_{0}, y_{1}\right) &= F_{1291}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{740}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1291}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1292}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1292}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1293}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1293}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{113}\! \left(x , y_{1}\right) F_{1153}\! \left(x , y_{0}, y_{2}\right)\\ F_{1294}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{1291}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{680}\! \left(x , y_{0}\right) &= F_{1295}\! \left(x , y_{0}\right)+F_{1296}\! \left(x , y_{0}\right)\\ F_{1296}\! \left(x , y_{0}\right) &= F_{1297}\! \left(x , y_{0}\right)+F_{682}\! \left(x , y_{0}\right)\\ F_{1297}\! \left(x , y_{0}\right) &= F_{1298}\! \left(x , y_{0}\right)\\ F_{1298}\! \left(x , y_{0}\right) &= F_{1299}\! \left(x , 1, y_{0}\right)\\ F_{1299}\! \left(x , y_{0}, y_{1}\right) &= F_{1300}\! \left(x , y_{0}, y_{1}\right)\\ F_{1300}\! \left(x , y_{0}, y_{1}\right) &= F_{1301}\! \left(x , y_{1}\right)+F_{1303}\! \left(x , y_{0}, y_{1}\right)\\ F_{1301}\! \left(x , y_{0}\right) &= F_{1302}\! \left(x , y_{0}\right)\\ F_{1302}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1217}\! \left(x , y_{0}\right)\\ F_{1303}\! \left(x , y_{0}, y_{1}\right) &= F_{1304}\! \left(x , y_{0}, y_{1}\right)\\ F_{1304}\! \left(x , y_{0}, y_{1}\right) &= F_{697}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1305}\! \left(x , y_{0}\right) &= F_{1306}\! \left(x , y_{0}\right)\\ F_{1306}\! \left(x , y_{0}\right) &= F_{1307}\! \left(x , 1, y_{0}\right)\\ F_{1307}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{1}\right) F_{1308}\! \left(x , y_{0}, y_{1}\right)\\ F_{1308}\! \left(x , y_{0}, y_{1}\right) &= F_{1309}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{1309}\! \left(x , y_{0}, y_{1}\right) &= F_{1310}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1311}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{113}\! \left(x , y_{1}\right) F_{1310}\! \left(x , y_{0}, y_{2}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1311}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1312}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1313}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{1312}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1066}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1313}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1314}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1314}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{703}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1315}\! \left(x , y_{0}\right) &= F_{1316}\! \left(x , y_{0}\right)\\ F_{1316}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1317}\! \left(x , y_{0}\right)\\ F_{1317}\! \left(x , y_{0}\right) &= F_{1318}\! \left(x , y_{0}\right)+F_{1373}\! \left(x , y_{0}\right)\\ F_{1319}\! \left(x , y_{0}\right) &= F_{1318}\! \left(x , y_{0}\right)+F_{1370}\! \left(x , y_{0}\right)\\ F_{1320}\! \left(x , y_{0}\right) &= F_{1319}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1320}\! \left(x , y_{0}\right) &= F_{1321}\! \left(x , y_{0}\right)\\ F_{1322}\! \left(x , y_{0}\right) &= F_{1321}\! \left(x , y_{0}\right)+F_{1330}\! \left(x , y_{0}\right)\\ F_{1323}\! \left(x , y_{0}\right) &= F_{1322}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1323}\! \left(x , y_{0}\right) &= F_{1324}\! \left(x , y_{0}\right)\\ F_{1324}\! \left(x , y_{0}\right) &= F_{1325}\! \left(x , y_{0}\right)+F_{1326}\! \left(x , y_{0}\right)\\ F_{1325}\! \left(x , y_{0}\right) &= F_{273}\! \left(x , 1, y_{0}\right)\\ F_{1326}\! \left(x , y_{0}\right) &= F_{1327}\! \left(x , y_{0}\right)\\ F_{1327}\! \left(x , y_{0}\right) &= F_{1328}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1328}\! \left(x , y_{0}\right) &= F_{1329}\! \left(x , y_{0}\right)+F_{745}\! \left(x , y_{0}\right)\\ F_{1329}\! \left(x , y_{0}\right) &= F_{309}\! \left(x , 1, y_{0}\right)\\ F_{1330}\! \left(x , y_{0}\right) &= F_{1331}\! \left(x , y_{0}\right)+F_{1354}\! \left(x , y_{0}\right)\\ F_{1331}\! \left(x , y_{0}\right) &= F_{1332}\! \left(x \right)+F_{1348}\! \left(x , y_{0}\right)\\ F_{1332}\! \left(x \right) &= F_{1333}\! \left(x \right)+F_{1345}\! \left(x \right)\\ F_{1333}\! \left(x \right) &= F_{1334}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{1334}\! \left(x \right) &= F_{1335}\! \left(x \right)+F_{1336}\! \left(x \right)\\ F_{1335}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{1336}\! \left(x \right) &= F_{1337}\! \left(x \right)+F_{1338}\! \left(x \right)\\ F_{1337}\! \left(x \right) &= F_{131}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1338}\! \left(x \right) &= F_{1339}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{1339}\! \left(x \right) &= F_{1340}\! \left(x \right)\\ F_{1340}\! \left(x \right) &= F_{1341}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1341}\! \left(x \right) &= F_{1342}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{1342}\! \left(x \right) &= F_{1343}\! \left(x \right)+F_{1344}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{1343}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1344}\! \left(x \right) &= F_{1341}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1345}\! \left(x \right) &= F_{1346}\! \left(x \right)\\ F_{1346}\! \left(x \right) &= F_{1347}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1347}\! \left(x \right) &= F_{572}\! \left(x , 1\right)\\ F_{1348}\! \left(x , y_{0}\right) &= F_{1349}\! \left(x , y_{0}\right)\\ F_{1349}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1350}\! \left(x , y_{0}\right)\\ F_{1350}\! \left(x , y_{0}\right) &= F_{1351}\! \left(x , 1, y_{0}\right)\\ F_{1351}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{1352}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{1352}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{1353}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1352}\! \left(x , y_{0}, y_{1}\right)\\ F_{1353}\! \left(x , y_{0}, y_{1}\right) &= F_{277}\! \left(x , y_{0}, y_{1}\right)\\ F_{1354}\! \left(x , y_{0}\right) &= F_{1355}\! \left(x , 1, y_{0}\right)\\ F_{1355}\! \left(x , y_{0}, y_{1}\right) &= F_{1356}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1356}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1357}\! \left(x , y_{0}, y_{1}\right)+F_{1366}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1357}\! \left(x , y_{0}, y_{1}\right) &= F_{1358}\! \left(x , y_{0}, y_{1}\right)\\ F_{1358}\! \left(x , y_{0}, y_{1}\right) &= F_{1359}\! \left(x , y_{0}, y_{1}\right)+F_{820}\! \left(x , y_{0}, y_{1}\right)\\ F_{1359}\! \left(x , y_{0}, y_{1}\right) &= F_{1360}\! \left(x , y_{0}, y_{1}\right)\\ F_{1360}\! \left(x , y_{0}, y_{1}\right) &= F_{1361}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1361}\! \left(x , y_{0}, y_{1}\right) &= F_{1362}\! \left(x , y_{0}, y_{1}\right)+F_{1365}\! \left(x , y_{0}, y_{1}\right)\\ F_{1362}\! \left(x , y_{0}, y_{1}\right) &= F_{1363}\! \left(x , y_{0}, y_{1}\right)\\ F_{1363}\! \left(x , y_{0}, y_{1}\right) &= F_{1364}\! \left(x , y_{0}, y_{1}\right)+F_{411}\! \left(x , y_{1}\right)\\ F_{1364}\! \left(x , y_{0}, y_{1}\right) &= F_{1359}\! \left(x , y_{0}, y_{1}\right)\\ F_{1365}\! \left(x , y_{0}, y_{1}\right) &= F_{262}\! \left(x , y_{0}, y_{1}\right)\\ F_{1366}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1367}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1367}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{2}\right) F_{1368}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1368}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{1369}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{1369}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{1369}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1356}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1370}\! \left(x , y_{0}\right) &= F_{1371}\! \left(x , 1, y_{0}\right)\\ F_{1372}\! \left(x , y_{0}, y_{1}\right) &= F_{1371}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1372}\! \left(x , y_{0}, y_{1}\right) &= F_{309}\! \left(x , y_{0}, y_{1}\right)\\ F_{1373}\! \left(x , y_{0}\right) &= F_{1374}\! \left(x , y_{0}\right)\\ F_{1374}\! \left(x , y_{0}\right) &= F_{1375}\! \left(x , y_{0}, 1\right)\\ F_{1375}\! \left(x , y_{0}, y_{1}\right) &= F_{1376}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{1376}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{1377}\! \left(x , y_{1}\right)\\ F_{1378}\! \left(x , y_{0}\right) &= F_{1377}\! \left(x , y_{0}\right)+F_{1383}\! \left(x , y_{0}\right)\\ F_{1378}\! \left(x , y_{0}\right) &= F_{1379}\! \left(x , 1, y_{0}\right)\\ F_{1380}\! \left(x , y_{0}, y_{1}\right) &= F_{1379}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1380}\! \left(x , y_{0}, y_{1}\right) &= F_{1381}\! \left(x , y_{0}, y_{1}\right)\\ F_{1381}\! \left(x , y_{0}, y_{1}\right) &= F_{1382}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{1382}\! \left(x , y_{0}, y_{1}\right) &= F_{703}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1384}\! \left(x , y_{0}\right) &= F_{1318}\! \left(x , y_{0}\right)+F_{1383}\! \left(x , y_{0}\right)\\ F_{1384}\! \left(x , y_{0}\right) &= F_{1385}\! \left(x , 1, y_{0}\right)\\ F_{1386}\! \left(x , y_{0}, y_{1}\right) &= F_{1385}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1386}\! \left(x , y_{0}, y_{1}\right) &= F_{1387}\! \left(x , y_{0}, y_{1}\right)\\ F_{1387}\! \left(x , y_{0}, y_{1}\right) &= F_{1388}\! \left(x , y_{0}, y_{1}\right)+F_{744}\! \left(x , y_{1}\right)\\ F_{1388}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{754}\! \left(x , y_{1}\right)\\ F_{1389}\! \left(x , y_{0}\right) &= F_{1390}\! \left(x , y_{0}\right)\\ F_{1390}\! \left(x , y_{0}\right) &= F_{1391}\! \left(x , y_{0}, 1\right)\\ F_{1392}\! \left(x , y_{0}, y_{1}\right) &= F_{1391}\! \left(x , y_{0}, y_{1}\right)+F_{1396}\! \left(x , y_{0}\right)\\ F_{1392}\! \left(x , y_{0}, y_{1}\right) &= F_{1393}\! \left(x , y_{0}, y_{1}\right)\\ F_{1394}\! \left(x , y_{0}, y_{1}\right) &= F_{1393}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1394}\! \left(x , y_{0}, y_{1}\right) &= F_{1395}\! \left(x , y_{0}, y_{1}\right)\\ F_{1395}\! \left(x , y_{0}, y_{1}\right) &= F_{1001}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1396}\! \left(x , y_{0}\right) &= F_{1397}\! \left(x , y_{0}\right)\\ F_{1397}\! \left(x , y_{0}\right) &= F_{1398}\! \left(x , 1, y_{0}\right)\\ F_{1398}\! \left(x , y_{0}, y_{1}\right) &= F_{1399}\! \left(x , y_{0}, y_{1}\right)\\ F_{1400}\! \left(x , y_{0}, y_{1}\right) &= F_{1399}\! \left(x , y_{0}, y_{1}\right)+F_{1402}\! \left(x , y_{1}\right)\\ F_{1401}\! \left(x , y_{0}, y_{1}\right) &= F_{1400}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1401}\! \left(x , y_{0}, y_{1}\right) &= F_{992}\! \left(x , y_{0}, y_{1}\right)\\ F_{1403}\! \left(x , y_{0}\right) &= F_{1402}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1403}\! \left(x , y_{0}\right) &= F_{993}\! \left(x , y_{0}\right)\\ F_{1404}\! \left(x , y_{0}, y_{1}\right) &= F_{1391}\! \left(x , y_{0}, y_{1}\right)\\ F_{1405}\! \left(x , y_{0}, y_{1}\right) &= F_{1011}\! \left(x , y_{1}\right) F_{1406}\! \left(x , y_{0}, y_{1}\right)\\ F_{1407}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}\right) F_{1406}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1407}\! \left(x , y_{0}, y_{1}\right) &= F_{1408}\! \left(x , y_{1}, y_{0}\right)\\ F_{1408}\! \left(x , y_{0}, y_{1}\right) &= F_{1409}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{1409}\! \left(x , y_{0}, y_{1}\right) &= F_{1410}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1410}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1411}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1411}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1412}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{4}\! \left(x \right)\\ F_{1412}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1413}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1310}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1413}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1414}\! \left(x , y_{0}, y_{1}\right)\\ F_{1415}\! \left(x , y_{0}, y_{1}\right) &= F_{1414}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1415}\! \left(x , y_{0}, y_{1}\right) &= F_{498}\! \left(x , y_{0}, y_{1}\right)\\ F_{1416}\! \left(x , y_{0}\right) &= F_{1417}\! \left(x , y_{0}, 1\right)\\ F_{1417}\! \left(x , y_{0}, y_{1}\right) &= F_{1418}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{1418}\! \left(x , y_{0}, y_{1}\right) &= F_{654}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1419}\! \left(x , y_{0}, y_{1}\right) &= F_{654}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{296}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1258}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1420}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1421}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{1004}\! \left(x , y_{0}, y_{1}, y_{1}\right)\\ F_{1422}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1423}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1423}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1424}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{4}\! \left(x \right)\\ F_{1424}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{648}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{1}+F_{648}\! \left(x , y_{0}, 1, y_{2}\right)}{-1+y_{1}}\\ F_{1425}\! \left(x , y_{0}\right) &= F_{1426}\! \left(x , 1, y_{0}\right)\\ F_{1426}\! \left(x , y_{0}, y_{1}\right) &= F_{1427}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1427}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1428}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1428}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1429}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1429}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1253}\! \left(x , y_{0}, y_{2}\right)+F_{1430}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1430}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1431}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{287}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1431}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1248}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1432}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{1433}\! \left(x , y_{0}, y_{1}\right)\\ F_{1433}\! \left(x , y_{0}, y_{1}\right) &= F_{1434}\! \left(x , y_{0}, y_{1}\right)\\ F_{1434}\! \left(x , y_{0}, y_{1}\right) &= F_{1435}\! \left(x , y_{0}, y_{1}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1435}\! \left(x , y_{0}, y_{1}\right) &= F_{982}\! \left(x , y_{0}, y_{1}\right)\\ F_{1436}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{1437}\! \left(x , y_{0}, y_{1}\right)\\ F_{661}\! \left(x , y_{0}, y_{1}\right) &= F_{1437}\! \left(x , y_{0}, y_{1}\right)+F_{775}\! \left(x , y_{1}\right)\\ F_{1438}\! \left(x , y_{0}\right) &= y_{0} F_{1439}\! \left(x , y_{0}\right)\\ F_{1440}\! \left(x , y_{0}\right) &= F_{1439}\! \left(x , y_{0}\right)+F_{1442}\! \left(x , y_{0}\right)\\ F_{810}\! \left(x , y_{0}\right) &= F_{1440}\! \left(x , y_{0}\right)+F_{1441}\! \left(x , y_{0}\right)\\ F_{1441}\! \left(x , y_{0}\right) &= F_{1433}\! \left(x , 1, y_{0}\right)\\ F_{1442}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{543}\! \left(x , y_{0}\right)\\ F_{1443}\! \left(x , y_{0}\right) &= F_{1444}\! \left(x , y_{0}\right) F_{533}\! \left(x , y_{0}\right)\\ F_{1444}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right)+F_{1445}\! \left(x , y_{0}\right)\\ F_{1445}\! \left(x , y_{0}\right) &= y_{0} F_{1446}\! \left(x , y_{0}\right)\\ F_{1446}\! \left(x , y_{0}\right) &= F_{1013}\! \left(x , y_{0}\right)+F_{1447}\! \left(x , y_{0}\right)+F_{20}\! \left(x \right)\\ F_{1447}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1448}\! \left(x , y_{0}\right)\\ F_{1448}\! \left(x , y_{0}\right) &= F_{1449}\! \left(x , y_{0}\right)+F_{1457}\! \left(x , y_{0}\right)\\ F_{1449}\! \left(x , y_{0}\right) &= F_{1450}\! \left(x , y_{0}\right)+F_{4}\! \left(x \right)\\ F_{1450}\! \left(x , y_{0}\right) &= F_{1451}\! \left(x , y_{0}\right)\\ F_{1451}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1452}\! \left(x , y_{0}\right)\\ F_{1452}\! \left(x , y_{0}\right) &= F_{1453}\! \left(x , y_{0}\right)+F_{1456}\! \left(x , y_{0}\right)\\ F_{1453}\! \left(x , y_{0}\right) &= F_{1454}\! \left(x , y_{0}\right)+F_{4}\! \left(x \right)\\ F_{1454}\! \left(x , y_{0}\right) &= F_{1455}\! \left(x , y_{0}\right)\\ F_{1455}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1453}\! \left(x , y_{0}\right)\\ F_{1456}\! \left(x , y_{0}\right) &= F_{1450}\! \left(x , y_{0}\right)\\ F_{1457}\! \left(x , y_{0}\right) &= F_{1446}\! \left(x , y_{0}\right)+F_{1458}\! \left(x , y_{0}\right)\\ F_{1458}\! \left(x , y_{0}\right) &= 2 F_{20}\! \left(x \right)+F_{1459}\! \left(x , y_{0}\right)+F_{1466}\! \left(x , y_{0}\right)\\ F_{1459}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1460}\! \left(x , y_{0}\right)\\ F_{1460}\! \left(x , y_{0}\right) &= F_{1461}\! \left(x , y_{0}\right)+F_{1462}\! \left(x , y_{0}\right)\\ F_{1461}\! \left(x , y_{0}\right) &= F_{1454}\! \left(x , y_{0}\right)\\ F_{1462}\! \left(x , y_{0}\right) &= F_{1463}\! \left(x , y_{0}\right)\\ F_{1463}\! \left(x , y_{0}\right) &= F_{1464}\! \left(x , y_{0}\right)\\ F_{1464}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1465}\! \left(x , y_{0}\right)\\ F_{1465}\! \left(x , y_{0}\right) &= F_{1446}\! \left(x , y_{0}\right)+F_{1463}\! \left(x , y_{0}\right)\\ F_{1466}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1467}\! \left(x , y_{0}\right)\\ F_{1467}\! \left(x , y_{0}\right) &= F_{1465}\! \left(x , y_{0}\right)+F_{1468}\! \left(x , y_{0}\right)\\ F_{1468}\! \left(x , y_{0}\right) &= F_{1458}\! \left(x , y_{0}\right)\\ F_{1469}\! \left(x , y_{0}\right) &= F_{184}\! \left(x , y_{0}\right) F_{528}\! \left(x , y_{0}\right)\\ F_{1470}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{2}\! \left(x \right)\\ F_{1471}\! \left(x , y_{0}\right) &= F_{1472}\! \left(x , y_{0}\right)\\ F_{1472}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1473}\! \left(x , y_{0}\right)\\ F_{1473}\! \left(x , y_{0}\right) &= F_{1262}\! \left(x , y_{0}, 1\right)\\ F_{1474}\! \left(x , y_{0}, y_{1}\right) &= F_{1181}\! \left(x , y_{0}, y_{1}\right)\\ F_{1475}\! \left(x , y_{0}, y_{1}\right) &= F_{1476}\! \left(x , y_{1}\right)+F_{1494}\! \left(x , y_{0}, y_{1}\right)\\ F_{1477}\! \left(x , y_{0}\right) &= F_{1476}\! \left(x , y_{0}\right)+F_{1493}\! \left(x , y_{0}\right)\\ F_{1477}\! \left(x , y_{0}\right) &= F_{1478}\! \left(x , y_{0}\right)+F_{1480}\! \left(x , y_{0}\right)\\ F_{1478}\! \left(x , y_{0}\right) &= F_{1479}\! \left(x , 1, y_{0}\right)\\ F_{1479}\! \left(x , y_{0}, y_{1}\right) &= F_{1010}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1480}\! \left(x , y_{0}\right) &= F_{1481}\! \left(x , y_{0}\right)\\ F_{1481}\! \left(x , y_{0}\right) &= F_{1482}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1482}\! \left(x , y_{0}\right) &= F_{1483}\! \left(x , y_{0}\right)+F_{1484}\! \left(x , y_{0}\right)\\ F_{1483}\! \left(x , y_{0}\right) &= F_{1019}\! \left(x , 1, y_{0}\right)\\ F_{1484}\! \left(x , y_{0}\right) &= F_{1485}\! \left(x , 1, y_{0}\right)\\ F_{1485}\! \left(x , y_{0}, y_{1}\right) &= F_{1341}\! \left(x \right) F_{1486}\! \left(x , y_{0}, y_{1}\right)\\ F_{1487}\! \left(x , y_{0}, y_{1}\right) &= F_{4} \left(x \right)^{2} F_{1486}\! \left(x , y_{0}, y_{1}\right)\\ F_{1487}\! \left(x , y_{0}, y_{1}\right) &= F_{1488}\! \left(x , y_{0}, y_{1}\right)\\ F_{1488}\! \left(x , y_{0}, y_{1}\right) &= F_{1489}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1489}\! \left(x , y_{0}, y_{1}\right) &= F_{1490}\! \left(x , y_{0}, y_{1}\right)\\ F_{1491}\! \left(x , y_{0}, y_{1}\right) &= F_{1414}\! \left(x , y_{0}, y_{1}\right)+F_{1490}\! \left(x , y_{0}, y_{1}\right)\\ F_{1492}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x \right) F_{1491}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1492}\! \left(x , y_{0}, y_{1}\right) &= F_{1270}\! \left(x , y_{0}, y_{1}\right)\\ F_{1493}\! \left(x , y_{0}\right) &= F_{1494}\! \left(x , 1, y_{0}\right)\\ F_{1494}\! \left(x , y_{0}, y_{1}\right) &= F_{1001}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1495}\! \left(x , y_{0}, y_{1}\right) &= F_{1496}\! \left(x , y_{0}, y_{1}\right)\\ F_{1496}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{1475}\! \left(x , y_{0}, y_{1}\right)\\ F_{1497}\! \left(x , y_{0}\right) &= F_{1498}\! \left(x \right)+F_{1499}\! \left(x , y_{0}\right)\\ F_{1498}\! \left(x \right) &= F_{553}\! \left(x , 1\right)\\ F_{1500}\! \left(x , y_{0}\right) &= F_{1499}\! \left(x , y_{0}\right)+F_{1525}\! \left(x , y_{0}\right)\\ F_{1501}\! \left(x , y_{0}\right) &= F_{1500}\! \left(x , y_{0}\right)+F_{1522}\! \left(x , y_{0}\right)\\ F_{1502}\! \left(x , y_{0}\right) &= F_{1501}\! \left(x , y_{0}\right)+F_{1516}\! \left(x , y_{0}\right)\\ F_{1503}\! \left(x , y_{0}\right) &= F_{1502}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1503}\! \left(x , y_{0}\right) &= F_{1504}\! \left(x , y_{0}\right)\\ F_{1505}\! \left(x , y_{0}\right) &= F_{1504}\! \left(x , y_{0}\right)+F_{1515}\! \left(x \right)\\ F_{510}\! \left(x , y_{0}\right) &= F_{1505}\! \left(x , y_{0}\right)+F_{1506}\! \left(x , y_{0}\right)\\ F_{1506}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right)+F_{1507}\! \left(x , y_{0}\right)\\ F_{1507}\! \left(x , y_{0}\right) &= F_{1508}\! \left(x , y_{0}\right)+F_{1512}\! \left(x , y_{0}\right)+F_{20}\! \left(x \right)\\ F_{1508}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1509}\! \left(x , y_{0}\right)\\ F_{1509}\! \left(x , y_{0}\right) &= F_{1510}\! \left(x , y_{0}\right)+F_{1511}\! \left(x , y_{0}\right)\\ F_{1510}\! \left(x , y_{0}\right) &= F_{15}\! \left(x \right)\\ F_{1511}\! \left(x , y_{0}\right) &= F_{1187}\! \left(x , y_{0}\right)\\ F_{1512}\! \left(x , y_{0}\right) &= F_{1513}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1513}\! \left(x , y_{0}\right) &= F_{1189}\! \left(x , y_{0}\right)+F_{1514}\! \left(x , y_{0}\right)\\ F_{1514}\! \left(x , y_{0}\right) &= F_{1507}\! \left(x , y_{0}\right)\\ F_{1515}\! \left(x \right) &= F_{526}\! \left(x , 1\right)\\ F_{1516}\! \left(x , y_{0}\right) &= F_{1517}\! \left(x , y_{0}\right)\\ F_{1517}\! \left(x , y_{0}\right) &= F_{1518}\! \left(x , y_{0}\right)+F_{1519}\! \left(x , y_{0}\right)\\ F_{1518}\! \left(x , y_{0}\right) &= F_{1274}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1519}\! \left(x , y_{0}\right) &= F_{1520}\! \left(x , 1, y_{0}\right)\\ F_{1520}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{1521}\! \left(x , y_{0}, y_{0}\right)\\ F_{704}\! \left(x , y_{0}, y_{1}\right) &= F_{1439}\! \left(x , y_{1}\right)+F_{1521}\! \left(x , y_{0}, y_{1}\right)\\ F_{1522}\! \left(x , y_{0}\right) &= F_{1523}\! \left(x , y_{0}\right)+F_{1524}\! \left(x , y_{0}\right)\\ F_{1523}\! \left(x , y_{0}\right) &= F_{1504}\! \left(x , y_{0}\right)+F_{501}\! \left(x , y_{0}\right)\\ F_{1524}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{1076}\! \left(x , y_{0}\right)\\ F_{1525}\! \left(x , y_{0}\right) &= F_{1526}\! \left(x , y_{0}, 1\right)\\ F_{1526}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{704}\! \left(x , y_{0}, y_{1}\right)\\ F_{1527}\! \left(x , y_{0}, y_{1}\right) &= F_{1528}\! \left(x , y_{0}, y_{1}\right)\\ F_{758}\! \left(x , y_{0}, y_{1}\right) &= F_{1528}\! \left(x , y_{0}, y_{1}\right)+F_{1529}\! \left(x , y_{0}, y_{1}\right)\\ F_{1529}\! \left(x , y_{0}, y_{1}\right) &= F_{1422}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1530}\! \left(x , y_{0}, y_{1}\right) &= F_{1497}\! \left(x , y_{0}\right)+F_{1531}\! \left(x , y_{0}, y_{1}\right)\\ F_{1531}\! \left(x , y_{0}, y_{1}\right) &= F_{1532}\! \left(x , y_{0}, y_{1}\right)\\ F_{1532}\! \left(x , y_{0}, y_{1}\right) &= F_{651}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1533}\! \left(x , y_{0}, y_{1}\right) &= F_{1534}\! \left(x , y_{0}\right)+F_{1535}\! \left(x , y_{0}, y_{1}\right)\\ F_{1534}\! \left(x , y_{0}\right) &= F_{707}\! \left(x , y_{0}, 1\right)\\ F_{1535}\! \left(x , y_{0}, y_{1}\right) &= F_{1536}\! \left(x , y_{0}, y_{1}\right)\\ F_{1536}\! \left(x , y_{0}, y_{1}\right) &= F_{697}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1537}\! \left(x , y_{0}\right) &= F_{1534}\! \left(x , y_{0}\right)+F_{509}\! \left(x , y_{0}\right)\\ F_{1538}\! \left(x , y_{0}, y_{1}\right) &= F_{1536}\! \left(x , y_{0}, y_{1}\right)+F_{1539}\! \left(x , y_{0}\right)\\ F_{1539}\! \left(x , y_{0}\right) &= F_{1540}\! \left(x , y_{0}\right)\\ F_{1540}\! \left(x , y_{0}\right) &= F_{1541}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{1541}\! \left(x , y_{0}\right) &= -\frac{-F_{491}\! \left(x , y_{0}\right) y_{0}+F_{491}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{1542}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1543}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1543}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1544}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{4}\! \left(x \right)\\ F_{1544}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1545}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1546}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{1545}\! \left(x , y_{0}, y_{2}, y_{1}\right) F_{4}\! \left(x \right)\\ F_{1546}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1410}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1547}\! \left(x , y_{0}, y_{1}\right) &= F_{1548}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1549}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1548}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{1551}\! \left(x , y_{1}, y_{2}\right)\\ F_{1550}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{107}\! \left(x , y_{1}\right) F_{1549}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1550}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{648}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1551}\! \left(x , y_{0}, y_{1}\right) &= F_{1552}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{1552}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{486}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{443}\! \left(x , y_{0}, y_{1}\right) &= F_{1553}\! \left(x , y_{0}, y_{1}\right)+F_{705}\! \left(x , y_{0}, y_{1}\right)\\ F_{1554}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1555}\! \left(x , y_{0}, y_{2}, y_{1}\right)\\ F_{1555}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{1004}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1556}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{743}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1557}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1558}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1558}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{739}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}+F_{739}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{1559}\! \left(x , y_{0}, y_{1}\right) &= F_{1560}\! \left(x , y_{0}, y_{1}\right)\\ F_{1560}\! \left(x , y_{0}, y_{1}\right) &= y_{1} F_{1561}\! \left(x , y_{0}, y_{1}\right)\\ F_{1561}\! \left(x , y_{0}, y_{1}\right) &= F_{1562}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{1562}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{694}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\ F_{1563}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1564}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1564}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1565}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{258}\! \left(x , y_{0}\right)\\ F_{1565}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{2} \left(F_{1566}\! \left(x , y_{0}, y_{1}, 1\right)-F_{1566}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{2}}\\ F_{1566}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{263}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{1567}\! \left(x , y_{0}\right) &= F_{1568}\! \left(x , y_{0}\right)\\ F_{1568}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , y_{0}\right) F_{113}\! \left(x , y_{0}\right) F_{1569}\! \left(x , y_{0}\right) F_{966}\! \left(x , y_{0}\right)\\ F_{1569}\! \left(x , y_{0}\right) &= F_{1570}\! \left(x , 1, y_{0}\right)\\ F_{1570}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{251}\! \left(x , y_{0}, y_{1}\right)+F_{251}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{1571}\! \left(x , y_{0}\right) &= F_{1572}\! \left(x , y_{0}, 1\right)\\ F_{1572}\! \left(x , y_{0}, y_{1}\right) &= F_{964}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{1573}\! \left(x \right) &= F_{1574}\! \left(x \right)\\ F_{1574}\! \left(x \right) &= F_{1575}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1575}\! \left(x \right) &= F_{1576}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{1576}\! \left(x \right) &= F_{1577}\! \left(x , 1\right)\\ F_{1577}\! \left(x , y_{0}\right) &= -\frac{-F_{1229}\! \left(x , y_{0}\right)+F_{1229}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{1578}\! \left(x \right) &= F_{1040}\! \left(x , 1\right)\\ \end{align*}\)