Av(12345, 12354, 13245, 13254, 13425, 13452, 13524, 13542)
Generating Function
\(\displaystyle \frac{4 x -5+\sqrt{8 x^{2}-8 x +1}}{4 x -4}\)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -2\right) F \left(x
\right)^{2}+\left(-4 x +5\right) F \! \left(x \right)+x -3 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 n a \! \left(n \right)}{n +3}-\frac{4 \left(3+4 n \right) a \! \left(n +1\right)}{n +3}+\frac{3 \left(5+3 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 n a \! \left(n \right)}{n +3}-\frac{4 \left(3+4 n \right) a \! \left(n +1\right)}{n +3}+\frac{3 \left(5+3 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 26 rules.
Found on January 23, 2022.Finding the specification took 2 seconds.
Copy 26 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{24}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\
F_{14}\! \left(x , y\right) &= \frac{y F_{15}\! \left(x , y\right)-F_{15}\! \left(x , 1\right)}{-1+y}\\
F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{22}\! \left(x , y\right)+F_{23}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right) F_{21}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= y x\\
F_{22}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{14}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{14}\! \left(x , y\right)\\
F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
\end{align*}\)