Av(12345, 12354, 12453, 21345, 21354, 21453, 31245, 31254)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 563, 2932, 15536, 83048, 445982, 2400927, 12942798, 69823762, 376843039, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 66 rules.

Found on January 24, 2022.

Finding the specification took 150 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 66 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{27}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{27}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x , y_{0}\right)+F_{62}\! \left(x , y_{0}\right)+F_{7}\! \left(x , y_{0}\right)\\ F_{7}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , y_{0}\right) F_{8}\! \left(x , y_{0}\right)\\ F_{8}\! \left(x , y_{0}\right) &= F_{9}\! \left(x , 1, y_{0}\right)\\ F_{9}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{10}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y_{0}\right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{15}\! \left(x , y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{0}, y_{1}\right)\\ F_{11}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\ F_{12}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{1}\right) F_{14}\! \left(x , y_{0}, y_{1}\right)\\ F_{14}\! \left(x , y_{0}, y_{1}\right) &= \frac{-y_{1} F_{9}\! \left(x , 1, y_{1}\right)+y_{0} F_{9}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right)}{-y_{1}+y_{0}}\\ F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{16}\! \left(x , y_{0}, y_{1}\right) F_{27}\! \left(x \right)\\ F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{17}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y_{2}, y_{0}\right)+F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{18}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{1}\right) F_{6}\! \left(x , y_{0}\right)\\ F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{12}\! \left(x , y_{1}\right) F_{20}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{20}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{-y_{1} F_{21}\! \left(x , 1, y_{1}, y_{2}\right)+y_{0} F_{21}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\ F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} F_{22}\! \left(x , y_{0}, y_{1}, 1\right)-y_{2} F_{22}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right)}{-y_{2}+y_{1}}\\ F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{12}\! \left(x , y_{2}\right) F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} F_{14}\! \left(x , y_{0}, y_{2}\right)-y_{1} F_{14}\! \left(x , y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\ F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{27}\! \left(x \right)\\ F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{2} F_{17}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{17}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{27}\! \left(x \right) &= x\\ F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{27}\! \left(x \right) F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{2} F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{30}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{31}\! \left(x , y_{2}, y_{0}\right)+F_{54}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{58}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{60}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{31}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{1}\right) F_{32}\! \left(x , y_{0}\right)\\ F_{32}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x , y_{0}\right)+F_{51}\! \left(x , y_{0}\right)+F_{52}\! \left(x , y_{0}\right)\\ F_{33}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , y_{0}\right) F_{34}\! \left(x , y_{0}\right)\\ F_{34}\! \left(x , y_{0}\right) &= F_{35}\! \left(x , y_{0}, 1\right)\\ F_{35}\! \left(x , y_{0}, y_{1}\right) &= F_{36}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{36}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y_{0}\right)+F_{37}\! \left(x , y_{0}, y_{1}\right)+F_{40}\! \left(x , y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{0}, y_{1}\right)\\ F_{37}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{1}\right) F_{38}\! \left(x , y_{0}, y_{1}\right)\\ F_{38}\! \left(x , y_{0}, y_{1}\right) &= \frac{-y_{1} F_{39}\! \left(x , 1, y_{1}\right)+y_{0} F_{39}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right)}{-y_{1}+y_{0}}\\ F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{36}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x \right) F_{41}\! \left(x , y_{0}, y_{1}\right)\\ F_{41}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{42}\! \left(x , y_{0}\right)-y_{1} F_{42}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\ F_{42}\! \left(x , y_{0}\right) &= F_{43}\! \left(x , y_{0}, 1\right)\\ F_{43}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x , y_{1}, y_{0}\right)+F_{44}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{0}, y_{1}\right)\\ F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x \right) F_{45}\! \left(x , y_{0}, y_{1}\right)\\ F_{45}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} F_{43}\! \left(x , y_{0}, y_{1}\right)-F_{43}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x \right) F_{47}\! \left(x , y_{0}, y_{1}\right)\\ F_{47}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} F_{48}\! \left(x , y_{0}, y_{1}\right)-F_{48}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{48}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{1}, y_{0}\right)+F_{37}\! \left(x , y_{0}, y_{1}\right)+F_{40}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{0}, y_{1}\right)\\ F_{49}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x \right) F_{50}\! \left(x , y_{0}, y_{1}\right)\\ F_{50}\! \left(x , y_{0}, y_{1}\right) &= F_{30}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{51}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right) F_{42}\! \left(x , y_{0}\right)\\ F_{52}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right) F_{53}\! \left(x , y_{0}\right)\\ F_{53}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{32}\! \left(x , y_{0}\right)-F_{32}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{54}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{12}\! \left(x , y_{1}\right) F_{55}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{55}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{-y_{1} F_{56}\! \left(x , 1, y_{1}, y_{2}\right)+y_{0} F_{56}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\ F_{56}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} F_{57}\! \left(x , y_{0}, y_{1}, 1\right)-y_{2} F_{57}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right)}{-y_{2}+y_{1}}\\ F_{57}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{36}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{58}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{12}\! \left(x , y_{2}\right) F_{59}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{59}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} F_{38}\! \left(x , y_{0}, y_{2}\right)-y_{1} F_{38}\! \left(x , y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\ F_{60}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{27}\! \left(x \right) F_{61}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{61}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} F_{41}\! \left(x , y_{0}, y_{2}\right)-y_{1} F_{41}\! \left(x , y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\ F_{62}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right) F_{63}\! \left(x , y_{0}\right)\\ F_{63}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{6}\! \left(x , y_{0}\right)-F_{6}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{64}\! \left(x \right) &= F_{27}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{32}\! \left(x , 1\right)\\ \end{align*}\)