Av(12345, 12354, 12453, 13452, 21345, 21354, 21453, 31245, 31254)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 549, 2803, 14541, 76071, 399806, 2106743, 11117990, 58724996, 310345973, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 69 rules.

Finding the specification took 301 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 69 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}\right)+F_{64}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\ F_{8}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y_{0}\right)\\ F_{9}\! \left(x , y_{0}\right) &= -\frac{-F_{7}\! \left(x , y_{0}\right) y_{0}+F_{7}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{10}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\ F_{11}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , 1, y_{0}\right)\\ F_{12}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{47}\! \left(x , y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{0}, y_{1}\right)+F_{58}\! \left(x , y_{1}, y_{0}\right)\\ F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\ F_{14}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{15}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{15}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x , y_{0}, y_{1}\right)+F_{40}\! \left(x , y_{1}, y_{0}\right)\\ F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\ F_{17}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{11}\! \left(x , y_{0}\right) y_{0}-F_{11}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{18}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{0}\right) F_{20}\! \left(x , y_{0}, y_{1}\right)\\ F_{19}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{20}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{21}\! \left(x , y_{0}, 1\right) y_{0}-F_{21}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{21}\! \left(x , y_{0}, y_{1}\right) &= F_{22}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{22}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x , y_{0}, y_{1}\right)+F_{23}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{1}\right)\\ F_{23}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\ F_{24}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y_{0}, y_{1}\right)+F_{41}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)+F_{43}\! \left(x , y_{0}, y_{1}\right)+F_{45}\! \left(x , y_{1}\right)\\ F_{25}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\ F_{26}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{27}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{28}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{37}\! \left(x , y_{1}, y_{0}, y_{2}\right)+F_{40}\! \left(x , y_{2}, y_{0}\right)\\ F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{3}\! \left(x \right) F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{28}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{3}\! \left(x \right) F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{17}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{17}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{19}\! \left(x , y_{0}\right) F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{35}\! \left(x , y_{0}, 1, y_{2}\right) y_{0}-F_{35}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{35}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{36}\! \left(x , y_{0}, y_{0} y_{1}, y_{2}\right)\\ F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{22}\! \left(x , y_{0}, y_{1}\right) y_{1}-F_{22}\! \left(x , y_{0}, y_{2}\right) y_{2}}{-y_{2}+y_{1}}\\ F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{19}\! \left(x , y_{0}\right) F_{38}\! \left(x , y_{1}, y_{0}, y_{2}\right)\\ F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{F_{39}\! \left(x , 1, y_{1}, y_{2}\right) y_{1}-F_{39}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{36}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\ F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{0}\right) F_{7}\! \left(x , y_{1}\right)\\ F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{31}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{33}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{43}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{0}\right) F_{44}\! \left(x , y_{0}, y_{1}\right)\\ F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{38}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{45}\! \left(x , y_{0}\right) &= F_{40}\! \left(x , y_{0}, 1\right)\\ F_{46}\! \left(x , y_{0}\right) &= F_{19}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\ F_{47}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{48}\! \left(x , y_{0}, y_{1}\right)\\ F_{48}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{12}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{12}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{49}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{0}\right) F_{50}\! \left(x , y_{0}, y_{1}\right)\\ F_{50}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{51}\! \left(x , y_{0}, 1\right)-F_{51}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{52}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{52}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x , y_{0}, y_{1}\right)+F_{53}\! \left(x , y_{0}, y_{1}\right)+F_{55}\! \left(x , y_{0}, y_{1}\right)+F_{57}\! \left(x , y_{1}\right)\\ F_{53}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{54}\! \left(x , y_{0}, y_{1}\right)\\ F_{54}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{22}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{22}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{55}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{56}\! \left(x , y_{0}, y_{1}\right)\\ F_{56}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{52}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{52}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{57}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right) F_{19}\! \left(x , y_{0}\right)\\ F_{58}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{0}\right) F_{59}\! \left(x , y_{1}\right)\\ F_{59}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x , y_{0}\right)+F_{62}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\ F_{60}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{61}\! \left(x , y_{0}\right)\\ F_{61}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{59}\! \left(x , y_{0}\right)+F_{59}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{62}\! \left(x , y_{0}\right) &= F_{19}\! \left(x , y_{0}\right) F_{63}\! \left(x , y_{0}\right)\\ F_{63}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}, 1\right)\\ F_{64}\! \left(x , y_{0}\right) &= F_{19}\! \left(x , y_{0}\right) F_{65}\! \left(x , y_{0}\right)\\ F_{65}\! \left(x , y_{0}\right) &= F_{66}\! \left(x , 1, y_{0}\right)\\ F_{66}\! \left(x , y_{0}, y_{1}\right) &= F_{22}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{67}\! \left(x \right) &= F_{3}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{59}\! \left(x , 1\right)\\ \end{align*}\)